Spaces:
Runtime error
Runtime error
Stefan Dumitrescu
commited on
Commit
·
ff08140
1
Parent(s):
f3f70d0
Update
Browse files
app.py
CHANGED
|
@@ -18,24 +18,14 @@ model_list = ['dumitrescustefan/bert-base-romanian-ner']
|
|
| 18 |
st.sidebar.header("Select NER Model")
|
| 19 |
model_checkpoint = st.sidebar.radio("", model_list)
|
| 20 |
|
| 21 |
-
st.sidebar.write("
|
| 22 |
st.sidebar.write("")
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
st.sidebar.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
st.sidebar.write(xlm_agg_strategy_info)
|
| 30 |
-
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
|
| 31 |
-
aggregation = st.sidebar.radio("", ('simple', 'none'))
|
| 32 |
-
st.sidebar.write(xlm_agg_strategy_info)
|
| 33 |
-
st.sidebar.write("")
|
| 34 |
-
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
| 35 |
-
else:
|
| 36 |
-
aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
|
| 37 |
-
|
| 38 |
-
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
| 39 |
|
| 40 |
st.subheader("Select Text Input Method")
|
| 41 |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
|
|
@@ -70,10 +60,9 @@ if Run_Button == True:
|
|
| 70 |
if word["tag"]!="O":
|
| 71 |
data.append({
|
| 72 |
"word": word["text"],
|
| 73 |
-
"
|
| 74 |
"start_char": word["start_char"],
|
| 75 |
-
"end_char": word["end_char"]
|
| 76 |
-
"span_after": word["span_after"],
|
| 77 |
})
|
| 78 |
df = pd.DataFrame.from_dict(data)
|
| 79 |
st.subheader("Recognized Entities")
|
|
@@ -87,15 +76,14 @@ if Run_Button == True:
|
|
| 87 |
spacy_display["title"] = None
|
| 88 |
|
| 89 |
for word in output["words"]:
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
-
entity_list = ['
|
| 94 |
'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME',
|
| 95 |
'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC',
|
| 96 |
'ORDINAL', 'FACILITY']
|
| 97 |
colors = {
|
| 98 |
-
'O': '#FFF',
|
| 99 |
'PERSON': '#F00',
|
| 100 |
'ORG': '#F00',
|
| 101 |
'GPE': '#F00',
|
|
|
|
| 18 |
st.sidebar.header("Select NER Model")
|
| 19 |
model_checkpoint = st.sidebar.radio("", model_list)
|
| 20 |
|
| 21 |
+
st.sidebar.write("This demo is based on RoNER: 'https://github.com/dumitrescustefan/roner'")
|
| 22 |
st.sidebar.write("")
|
| 23 |
|
| 24 |
+
|
| 25 |
+
st.sidebar.header("Select type of PERSON detection")
|
| 26 |
+
named_persons_only = st.sidebar.radio("", ('Proper nouns only', 'All nouns'))
|
| 27 |
+
|
| 28 |
+
st.sidebar.write("Types of entities detected: 'PERSON', 'ORG', 'GPE', 'LOC', 'NAT_REL_POL', 'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME', 'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC', 'ORDINAL', 'FACILITY'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
st.subheader("Select Text Input Method")
|
| 31 |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
|
|
|
|
| 60 |
if word["tag"]!="O":
|
| 61 |
data.append({
|
| 62 |
"word": word["text"],
|
| 63 |
+
"entity": word["tag"],
|
| 64 |
"start_char": word["start_char"],
|
| 65 |
+
"end_char": word["end_char"]
|
|
|
|
| 66 |
})
|
| 67 |
df = pd.DataFrame.from_dict(data)
|
| 68 |
st.subheader("Recognized Entities")
|
|
|
|
| 76 |
spacy_display["title"] = None
|
| 77 |
|
| 78 |
for word in output["words"]:
|
| 79 |
+
if word["tag"]!="O":
|
| 80 |
+
spacy_display["ents"].append({"start": word["start_char"], "end": word["end_char"], "label": word["tag"]})
|
| 81 |
|
| 82 |
+
entity_list = ['PERSON', 'ORG', 'GPE', 'LOC', 'NAT_REL_POL',
|
| 83 |
'EVENT', 'LANGUAGE', 'WORK_OF_ART', 'DATETIME',
|
| 84 |
'PERIOD', 'MONEY', 'QUANTITY', 'NUMERIC',
|
| 85 |
'ORDINAL', 'FACILITY']
|
| 86 |
colors = {
|
|
|
|
| 87 |
'PERSON': '#F00',
|
| 88 |
'ORG': '#F00',
|
| 89 |
'GPE': '#F00',
|