Spaces:
Sleeping
Sleeping
File size: 1,226 Bytes
80132d7 520907f 80132d7 520907f 80132d7 520907f fa27525 520907f fa27525 80132d7 520907f 80132d7 520907f 80132d7 fa27525 520907f 80132d7 520907f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
# Load the fine-tuned summarisation model
model = T5ForConditionalGeneration.from_pretrained("drelhaj/FinAraT5")
tokenizer = T5Tokenizer.from_pretrained("drelhaj/FinAraT5") # Assumes spiece.model is present on the Hub
# Define summarisation logic
def summarise(text):
text = text.strip()
if not text.startswith("لخص:"):
text = "لخص: " + text
inputs = tokenizer(text, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=64)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio interface
demo = gr.Interface(
fn=summarise,
inputs=gr.Textbox(lines=4, placeholder="أدخل نصًا ماليًا باللغة العربية..."),
outputs="text",
title="FinAraT5 – Arabic Financial News Summarisation",
description="يستخدم هذا النموذج لإنشاء ملخصات قصيرة للأخبار المالية العربية. إذا لم يبدأ الإدخال بـ 'لخص:' فسيتم إضافته تلقائيًا."
)
# Launch the app
demo.launch()
|