Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -49,53 +49,52 @@ def process_text_pipeline(text):
|
|
| 49 |
return "\n".join(processed_sentences)
|
| 50 |
|
| 51 |
# ---------------- Additional Sentiment Models (No Sarcasm) ----------------
|
|
|
|
| 52 |
additional_models = {
|
| 53 |
-
"siebert/sentiment-roberta-large-english":
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
|
| 60 |
def run_sentiment_with_selected_model(text, model_name):
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 68 |
-
model = additional_models[model_name]
|
| 69 |
-
tokens = tokenizer([text], return_tensors="pt", padding=True, truncation=True)
|
| 70 |
-
outputs = F.softmax(model(**tokens).logits, dim=1)
|
| 71 |
-
prob_pos = outputs[0][1].item()
|
| 72 |
-
prob_neg = outputs[0][0].item()
|
| 73 |
-
emoji = "β
" if prob_pos > prob_neg else "β"
|
| 74 |
-
return f"{emoji} '{text}' -> Positive: {prob_pos:.2%}, Negative: {prob_neg:.2%}"
|
| 75 |
-
|
| 76 |
-
elif model_name == "j-hartmann/sentiment-roberta-large-english-3-classes":
|
| 77 |
-
results = additional_models[model_name](text)[0]
|
| 78 |
-
label_scores = {res['label']: res['score'] for res in results}
|
| 79 |
-
label = max(label_scores, key=label_scores.get)
|
| 80 |
-
emoji = "β
" if "positive" in label.lower() else "β" if "negative" in label.lower() else "β οΈ"
|
| 81 |
-
score_str = ", ".join([f"{k}: {v:.2%}" for k, v in label_scores.items()])
|
| 82 |
-
return f"{emoji} '{text}' -> {score_str}"
|
| 83 |
-
|
| 84 |
-
elif model_name == "cardiffnlp/twitter-xlm-roberta-base-sentiment":
|
| 85 |
-
result = additional_models[model_name](text)[0]
|
| 86 |
-
emoji = "β
" if result["label"].lower() == "positive" else "β" if result["label"].lower() == "negative" else "β οΈ"
|
| 87 |
-
return f"{emoji} '{text}' -> {result['label']}"
|
| 88 |
-
|
| 89 |
-
elif model_name == "sohan-ai/sentiment-analysis-model-amazon-reviews":
|
| 90 |
-
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 91 |
-
model = additional_models[model_name]
|
| 92 |
-
inputs = tokenizer(text, return_tensors="pt")
|
| 93 |
outputs = model(**inputs)
|
| 94 |
-
label = "Positive" if outputs.logits.argmax().item() == 1 else "Negative"
|
| 95 |
-
emoji = "β
" if label == "Positive" else "β"
|
| 96 |
-
return f"{emoji} '{text}' -> {label}"
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# ---------------- Gradio UI ----------------
|
| 101 |
background_css = """
|
|
|
|
| 49 |
return "\n".join(processed_sentences)
|
| 50 |
|
| 51 |
# ---------------- Additional Sentiment Models (No Sarcasm) ----------------
|
| 52 |
+
# Pre-load tokenizers + models for safety
|
| 53 |
additional_models = {
|
| 54 |
+
"siebert/sentiment-roberta-large-english": {
|
| 55 |
+
"tokenizer": AutoTokenizer.from_pretrained("siebert/sentiment-roberta-large-english"),
|
| 56 |
+
"model": AutoModelForSequenceClassification.from_pretrained("siebert/sentiment-roberta-large-english")
|
| 57 |
+
},
|
| 58 |
+
"assemblyai/bert-large-uncased-sst2": {
|
| 59 |
+
"tokenizer": AutoTokenizer.from_pretrained("assemblyai/bert-large-uncased-sst2"),
|
| 60 |
+
"model": AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2")
|
| 61 |
+
},
|
| 62 |
+
"j-hartmann/sentiment-roberta-large-english-3-classes": {
|
| 63 |
+
"tokenizer": AutoTokenizer.from_pretrained("j-hartmann/sentiment-roberta-large-english-3-classes"),
|
| 64 |
+
"model": AutoModelForSequenceClassification.from_pretrained("j-hartmann/sentiment-roberta-large-english-3-classes")
|
| 65 |
+
},
|
| 66 |
+
"cardiffnlp/twitter-xlm-roberta-base-sentiment": {
|
| 67 |
+
"tokenizer": AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment"),
|
| 68 |
+
"model": AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment")
|
| 69 |
+
},
|
| 70 |
+
"sohan-ai/sentiment-analysis-model-amazon-reviews": {
|
| 71 |
+
"tokenizer": DistilBertTokenizer.from_pretrained("distilbert-base-uncased"),
|
| 72 |
+
"model": DistilBertForSequenceClassification.from_pretrained("sohan-ai/sentiment-analysis-model-amazon-reviews")
|
| 73 |
+
}
|
| 74 |
}
|
| 75 |
|
| 76 |
def run_sentiment_with_selected_model(text, model_name):
|
| 77 |
+
model_info = additional_models[model_name]
|
| 78 |
+
tokenizer = model_info["tokenizer"]
|
| 79 |
+
model = model_info["model"]
|
| 80 |
+
|
| 81 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 82 |
+
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
logits = outputs.logits
|
| 86 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 87 |
+
pred = torch.argmax(probs, dim=-1).item()
|
| 88 |
+
|
| 89 |
+
# Get label from model config if available
|
| 90 |
+
if model.config.id2label:
|
| 91 |
+
label = model.config.id2label[pred]
|
| 92 |
+
else:
|
| 93 |
+
label = "Positive" if pred == 1 else "Negative"
|
| 94 |
+
|
| 95 |
+
emoji = "β
" if "positive" in label.lower() else "β" if "negative" in label.lower() else "β οΈ"
|
| 96 |
+
return f"{emoji} '{text}' -> {label}"
|
| 97 |
+
|
| 98 |
|
| 99 |
# ---------------- Gradio UI ----------------
|
| 100 |
background_css = """
|