Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
| 7 |
-
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
| 8 |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews", use_fast=False)
|
|
|
|
|
|
|
| 9 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews", use_fast=False)
|
| 10 |
|
| 11 |
-
# Function to analyze sentiment
|
| 12 |
def analyze_sentiment(sentence):
|
| 13 |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 14 |
with torch.no_grad():
|
|
@@ -18,7 +19,6 @@ def analyze_sentiment(sentence):
|
|
| 18 |
sentiment_mapping = {1: "Negative", 0: "Positive"}
|
| 19 |
return sentiment_mapping[predicted_class]
|
| 20 |
|
| 21 |
-
# Function to detect sarcasm
|
| 22 |
def detect_sarcasm(sentence):
|
| 23 |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 24 |
with torch.no_grad():
|
|
@@ -27,15 +27,14 @@ def detect_sarcasm(sentence):
|
|
| 27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
| 29 |
|
| 30 |
-
# Combined function for processing sentences
|
| 31 |
def process_text_pipeline(text):
|
| 32 |
-
sentences = text.split("\n")
|
| 33 |
processed_sentences = []
|
| 34 |
|
| 35 |
for sentence in sentences:
|
| 36 |
sentence = sentence.strip()
|
| 37 |
if not sentence:
|
| 38 |
-
continue
|
| 39 |
|
| 40 |
sentiment = analyze_sentiment(sentence)
|
| 41 |
if sentiment == "Negative":
|
|
@@ -49,7 +48,56 @@ def process_text_pipeline(text):
|
|
| 49 |
|
| 50 |
return "\n".join(processed_sentences)
|
| 51 |
|
| 52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
background_css = """
|
| 54 |
.gradio-container {
|
| 55 |
background-image: url('https://huggingface.co/spaces/dnzblgn/Sarcasm_Detection/resolve/main/image.png');
|
|
@@ -57,20 +105,17 @@ background_css = """
|
|
| 57 |
background-position: center;
|
| 58 |
color: white;
|
| 59 |
}
|
| 60 |
-
|
| 61 |
.gr-input, .gr-textbox {
|
| 62 |
-
background-color: rgba(255, 255, 255, 0.3) !important;
|
| 63 |
border-radius: 10px;
|
| 64 |
padding: 10px;
|
| 65 |
color: black !important;
|
| 66 |
}
|
| 67 |
-
|
| 68 |
h1, h2, p {
|
| 69 |
-
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.8);
|
| 70 |
}
|
| 71 |
"""
|
| 72 |
|
| 73 |
-
# Gradio UI with updated header and transparent design
|
| 74 |
with gr.Blocks(css=background_css) as interface:
|
| 75 |
gr.Markdown(
|
| 76 |
"""
|
|
@@ -81,14 +126,9 @@ with gr.Blocks(css=background_css) as interface:
|
|
| 81 |
|
| 82 |
with gr.Tab("Text Input"):
|
| 83 |
with gr.Row():
|
| 84 |
-
text_input = gr.Textbox(
|
| 85 |
-
lines=10,
|
| 86 |
-
label="Enter Sentences",
|
| 87 |
-
placeholder="Enter one or more sentences, each on a new line."
|
| 88 |
-
)
|
| 89 |
result_output = gr.Textbox(label="Results", lines=10, interactive=False)
|
| 90 |
analyze_button = gr.Button("π Analyze")
|
| 91 |
-
|
| 92 |
analyze_button.click(process_text_pipeline, inputs=text_input, outputs=result_output)
|
| 93 |
|
| 94 |
with gr.Tab("Upload Text File"):
|
|
@@ -101,6 +141,19 @@ with gr.Blocks(css=background_css) as interface:
|
|
| 101 |
|
| 102 |
file_input.change(process_file, inputs=file_input, outputs=file_output)
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
if __name__ == "__main__":
|
| 106 |
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline, DistilBertTokenizer, DistilBertForSequenceClassification
|
| 5 |
|
| 6 |
+
# ---------------- Original Sarcasm + Sentiment Models ----------------
|
| 7 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
|
|
|
| 8 |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews", use_fast=False)
|
| 9 |
+
|
| 10 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
| 11 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews", use_fast=False)
|
| 12 |
|
|
|
|
| 13 |
def analyze_sentiment(sentence):
|
| 14 |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 15 |
with torch.no_grad():
|
|
|
|
| 19 |
sentiment_mapping = {1: "Negative", 0: "Positive"}
|
| 20 |
return sentiment_mapping[predicted_class]
|
| 21 |
|
|
|
|
| 22 |
def detect_sarcasm(sentence):
|
| 23 |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 24 |
with torch.no_grad():
|
|
|
|
| 27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
| 29 |
|
|
|
|
| 30 |
def process_text_pipeline(text):
|
| 31 |
+
sentences = text.split("\n")
|
| 32 |
processed_sentences = []
|
| 33 |
|
| 34 |
for sentence in sentences:
|
| 35 |
sentence = sentence.strip()
|
| 36 |
if not sentence:
|
| 37 |
+
continue
|
| 38 |
|
| 39 |
sentiment = analyze_sentiment(sentence)
|
| 40 |
if sentiment == "Negative":
|
|
|
|
| 48 |
|
| 49 |
return "\n".join(processed_sentences)
|
| 50 |
|
| 51 |
+
# ---------------- Additional Sentiment Models (No Sarcasm) ----------------
|
| 52 |
+
additional_models = {
|
| 53 |
+
"siebert/sentiment-roberta-large-english": pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english"),
|
| 54 |
+
"assemblyai/bert-large-uncased-sst2": AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2"),
|
| 55 |
+
"j-hartmann/sentiment-roberta-large-english-3-classes": pipeline("text-classification", model="j-hartmann/sentiment-roberta-large-english-3-classes", return_all_scores=True),
|
| 56 |
+
"cardiffnlp/twitter-xlm-roberta-base-sentiment": pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment"),
|
| 57 |
+
"sohan-ai/sentiment-analysis-model-amazon-reviews": DistilBertForSequenceClassification.from_pretrained("sohan-ai/sentiment-analysis-model-amazon-reviews")
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
def run_sentiment_with_selected_model(text, model_name):
|
| 61 |
+
if model_name == "siebert/sentiment-roberta-large-english":
|
| 62 |
+
result = additional_models[model_name](text)[0]
|
| 63 |
+
emoji = "β
" if result["label"].lower() == "positive" else "β"
|
| 64 |
+
return f"{emoji} '{text}' -> {result['label']}"
|
| 65 |
+
|
| 66 |
+
elif model_name == "assemblyai/bert-large-uncased-sst2":
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 68 |
+
model = additional_models[model_name]
|
| 69 |
+
tokens = tokenizer([text], return_tensors="pt", padding=True, truncation=True)
|
| 70 |
+
outputs = F.softmax(model(**tokens).logits, dim=1)
|
| 71 |
+
prob_pos = outputs[0][1].item()
|
| 72 |
+
prob_neg = outputs[0][0].item()
|
| 73 |
+
emoji = "β
" if prob_pos > prob_neg else "β"
|
| 74 |
+
return f"{emoji} '{text}' -> Positive: {prob_pos:.2%}, Negative: {prob_neg:.2%}"
|
| 75 |
+
|
| 76 |
+
elif model_name == "j-hartmann/sentiment-roberta-large-english-3-classes":
|
| 77 |
+
results = additional_models[model_name](text)[0]
|
| 78 |
+
label_scores = {res['label']: res['score'] for res in results}
|
| 79 |
+
label = max(label_scores, key=label_scores.get)
|
| 80 |
+
emoji = "β
" if "positive" in label.lower() else "β" if "negative" in label.lower() else "β οΈ"
|
| 81 |
+
score_str = ", ".join([f"{k}: {v:.2%}" for k, v in label_scores.items()])
|
| 82 |
+
return f"{emoji} '{text}' -> {score_str}"
|
| 83 |
+
|
| 84 |
+
elif model_name == "cardiffnlp/twitter-xlm-roberta-base-sentiment":
|
| 85 |
+
result = additional_models[model_name](text)[0]
|
| 86 |
+
emoji = "β
" if result["label"].lower() == "positive" else "β" if result["label"].lower() == "negative" else "β οΈ"
|
| 87 |
+
return f"{emoji} '{text}' -> {result['label']}"
|
| 88 |
+
|
| 89 |
+
elif model_name == "sohan-ai/sentiment-analysis-model-amazon-reviews":
|
| 90 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 91 |
+
model = additional_models[model_name]
|
| 92 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 93 |
+
outputs = model(**inputs)
|
| 94 |
+
label = "Positive" if outputs.logits.argmax().item() == 1 else "Negative"
|
| 95 |
+
emoji = "β
" if label == "Positive" else "β"
|
| 96 |
+
return f"{emoji} '{text}' -> {label}"
|
| 97 |
+
|
| 98 |
+
return f"β οΈ Could not process with selected model."
|
| 99 |
+
|
| 100 |
+
# ---------------- Gradio UI ----------------
|
| 101 |
background_css = """
|
| 102 |
.gradio-container {
|
| 103 |
background-image: url('https://huggingface.co/spaces/dnzblgn/Sarcasm_Detection/resolve/main/image.png');
|
|
|
|
| 105 |
background-position: center;
|
| 106 |
color: white;
|
| 107 |
}
|
|
|
|
| 108 |
.gr-input, .gr-textbox {
|
| 109 |
+
background-color: rgba(255, 255, 255, 0.3) !important;
|
| 110 |
border-radius: 10px;
|
| 111 |
padding: 10px;
|
| 112 |
color: black !important;
|
| 113 |
}
|
|
|
|
| 114 |
h1, h2, p {
|
| 115 |
+
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.8);
|
| 116 |
}
|
| 117 |
"""
|
| 118 |
|
|
|
|
| 119 |
with gr.Blocks(css=background_css) as interface:
|
| 120 |
gr.Markdown(
|
| 121 |
"""
|
|
|
|
| 126 |
|
| 127 |
with gr.Tab("Text Input"):
|
| 128 |
with gr.Row():
|
| 129 |
+
text_input = gr.Textbox(lines=10, label="Enter Sentences", placeholder="Enter one or more sentences, each on a new line.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
result_output = gr.Textbox(label="Results", lines=10, interactive=False)
|
| 131 |
analyze_button = gr.Button("π Analyze")
|
|
|
|
| 132 |
analyze_button.click(process_text_pipeline, inputs=text_input, outputs=result_output)
|
| 133 |
|
| 134 |
with gr.Tab("Upload Text File"):
|
|
|
|
| 141 |
|
| 142 |
file_input.change(process_file, inputs=file_input, outputs=file_output)
|
| 143 |
|
| 144 |
+
with gr.Tab("Try Other Sentiment Models (No Sarcasm)"):
|
| 145 |
+
with gr.Row():
|
| 146 |
+
other_model_selector = gr.Dropdown(
|
| 147 |
+
choices=list(additional_models.keys()),
|
| 148 |
+
label="Choose a Sentiment Model"
|
| 149 |
+
)
|
| 150 |
+
with gr.Row():
|
| 151 |
+
model_text_input = gr.Textbox(lines=5, label="Enter Sentence")
|
| 152 |
+
model_result_output = gr.Textbox(label="Sentiment", lines=3, interactive=False)
|
| 153 |
+
|
| 154 |
+
run_model_btn = gr.Button("Run")
|
| 155 |
+
run_model_btn.click(run_sentiment_with_selected_model, inputs=[model_text_input, other_model_selector], outputs=model_result_output)
|
| 156 |
+
|
| 157 |
+
# ---------------- Run App ----------------
|
| 158 |
if __name__ == "__main__":
|
| 159 |
interface.launch()
|