Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
7 |
-
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
8 |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews", use_fast=False)
|
|
|
|
|
9 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews", use_fast=False)
|
10 |
|
11 |
-
# Function to analyze sentiment
|
12 |
def analyze_sentiment(sentence):
|
13 |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
14 |
with torch.no_grad():
|
@@ -18,7 +19,6 @@ def analyze_sentiment(sentence):
|
|
18 |
sentiment_mapping = {1: "Negative", 0: "Positive"}
|
19 |
return sentiment_mapping[predicted_class]
|
20 |
|
21 |
-
# Function to detect sarcasm
|
22 |
def detect_sarcasm(sentence):
|
23 |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
24 |
with torch.no_grad():
|
@@ -27,15 +27,14 @@ def detect_sarcasm(sentence):
|
|
27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
29 |
|
30 |
-
# Combined function for processing sentences
|
31 |
def process_text_pipeline(text):
|
32 |
-
sentences = text.split("\n")
|
33 |
processed_sentences = []
|
34 |
|
35 |
for sentence in sentences:
|
36 |
sentence = sentence.strip()
|
37 |
if not sentence:
|
38 |
-
continue
|
39 |
|
40 |
sentiment = analyze_sentiment(sentence)
|
41 |
if sentiment == "Negative":
|
@@ -49,7 +48,56 @@ def process_text_pipeline(text):
|
|
49 |
|
50 |
return "\n".join(processed_sentences)
|
51 |
|
52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
background_css = """
|
54 |
.gradio-container {
|
55 |
background-image: url('https://huggingface.co/spaces/dnzblgn/Sarcasm_Detection/resolve/main/image.png');
|
@@ -57,20 +105,17 @@ background_css = """
|
|
57 |
background-position: center;
|
58 |
color: white;
|
59 |
}
|
60 |
-
|
61 |
.gr-input, .gr-textbox {
|
62 |
-
background-color: rgba(255, 255, 255, 0.3) !important;
|
63 |
border-radius: 10px;
|
64 |
padding: 10px;
|
65 |
color: black !important;
|
66 |
}
|
67 |
-
|
68 |
h1, h2, p {
|
69 |
-
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.8);
|
70 |
}
|
71 |
"""
|
72 |
|
73 |
-
# Gradio UI with updated header and transparent design
|
74 |
with gr.Blocks(css=background_css) as interface:
|
75 |
gr.Markdown(
|
76 |
"""
|
@@ -81,14 +126,9 @@ with gr.Blocks(css=background_css) as interface:
|
|
81 |
|
82 |
with gr.Tab("Text Input"):
|
83 |
with gr.Row():
|
84 |
-
text_input = gr.Textbox(
|
85 |
-
lines=10,
|
86 |
-
label="Enter Sentences",
|
87 |
-
placeholder="Enter one or more sentences, each on a new line."
|
88 |
-
)
|
89 |
result_output = gr.Textbox(label="Results", lines=10, interactive=False)
|
90 |
analyze_button = gr.Button("π Analyze")
|
91 |
-
|
92 |
analyze_button.click(process_text_pipeline, inputs=text_input, outputs=result_output)
|
93 |
|
94 |
with gr.Tab("Upload Text File"):
|
@@ -101,6 +141,19 @@ with gr.Blocks(css=background_css) as interface:
|
|
101 |
|
102 |
file_input.change(process_file, inputs=file_input, outputs=file_output)
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
if __name__ == "__main__":
|
106 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline, DistilBertTokenizer, DistilBertForSequenceClassification
|
5 |
|
6 |
+
# ---------------- Original Sarcasm + Sentiment Models ----------------
|
7 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
|
|
8 |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews", use_fast=False)
|
9 |
+
|
10 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
11 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews", use_fast=False)
|
12 |
|
|
|
13 |
def analyze_sentiment(sentence):
|
14 |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
15 |
with torch.no_grad():
|
|
|
19 |
sentiment_mapping = {1: "Negative", 0: "Positive"}
|
20 |
return sentiment_mapping[predicted_class]
|
21 |
|
|
|
22 |
def detect_sarcasm(sentence):
|
23 |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
24 |
with torch.no_grad():
|
|
|
27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
29 |
|
|
|
30 |
def process_text_pipeline(text):
|
31 |
+
sentences = text.split("\n")
|
32 |
processed_sentences = []
|
33 |
|
34 |
for sentence in sentences:
|
35 |
sentence = sentence.strip()
|
36 |
if not sentence:
|
37 |
+
continue
|
38 |
|
39 |
sentiment = analyze_sentiment(sentence)
|
40 |
if sentiment == "Negative":
|
|
|
48 |
|
49 |
return "\n".join(processed_sentences)
|
50 |
|
51 |
+
# ---------------- Additional Sentiment Models (No Sarcasm) ----------------
|
52 |
+
additional_models = {
|
53 |
+
"siebert/sentiment-roberta-large-english": pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english"),
|
54 |
+
"assemblyai/bert-large-uncased-sst2": AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2"),
|
55 |
+
"j-hartmann/sentiment-roberta-large-english-3-classes": pipeline("text-classification", model="j-hartmann/sentiment-roberta-large-english-3-classes", return_all_scores=True),
|
56 |
+
"cardiffnlp/twitter-xlm-roberta-base-sentiment": pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment"),
|
57 |
+
"sohan-ai/sentiment-analysis-model-amazon-reviews": DistilBertForSequenceClassification.from_pretrained("sohan-ai/sentiment-analysis-model-amazon-reviews")
|
58 |
+
}
|
59 |
+
|
60 |
+
def run_sentiment_with_selected_model(text, model_name):
|
61 |
+
if model_name == "siebert/sentiment-roberta-large-english":
|
62 |
+
result = additional_models[model_name](text)[0]
|
63 |
+
emoji = "β
" if result["label"].lower() == "positive" else "β"
|
64 |
+
return f"{emoji} '{text}' -> {result['label']}"
|
65 |
+
|
66 |
+
elif model_name == "assemblyai/bert-large-uncased-sst2":
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
+
model = additional_models[model_name]
|
69 |
+
tokens = tokenizer([text], return_tensors="pt", padding=True, truncation=True)
|
70 |
+
outputs = F.softmax(model(**tokens).logits, dim=1)
|
71 |
+
prob_pos = outputs[0][1].item()
|
72 |
+
prob_neg = outputs[0][0].item()
|
73 |
+
emoji = "β
" if prob_pos > prob_neg else "β"
|
74 |
+
return f"{emoji} '{text}' -> Positive: {prob_pos:.2%}, Negative: {prob_neg:.2%}"
|
75 |
+
|
76 |
+
elif model_name == "j-hartmann/sentiment-roberta-large-english-3-classes":
|
77 |
+
results = additional_models[model_name](text)[0]
|
78 |
+
label_scores = {res['label']: res['score'] for res in results}
|
79 |
+
label = max(label_scores, key=label_scores.get)
|
80 |
+
emoji = "β
" if "positive" in label.lower() else "β" if "negative" in label.lower() else "β οΈ"
|
81 |
+
score_str = ", ".join([f"{k}: {v:.2%}" for k, v in label_scores.items()])
|
82 |
+
return f"{emoji} '{text}' -> {score_str}"
|
83 |
+
|
84 |
+
elif model_name == "cardiffnlp/twitter-xlm-roberta-base-sentiment":
|
85 |
+
result = additional_models[model_name](text)[0]
|
86 |
+
emoji = "β
" if result["label"].lower() == "positive" else "β" if result["label"].lower() == "negative" else "β οΈ"
|
87 |
+
return f"{emoji} '{text}' -> {result['label']}"
|
88 |
+
|
89 |
+
elif model_name == "sohan-ai/sentiment-analysis-model-amazon-reviews":
|
90 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
91 |
+
model = additional_models[model_name]
|
92 |
+
inputs = tokenizer(text, return_tensors="pt")
|
93 |
+
outputs = model(**inputs)
|
94 |
+
label = "Positive" if outputs.logits.argmax().item() == 1 else "Negative"
|
95 |
+
emoji = "β
" if label == "Positive" else "β"
|
96 |
+
return f"{emoji} '{text}' -> {label}"
|
97 |
+
|
98 |
+
return f"β οΈ Could not process with selected model."
|
99 |
+
|
100 |
+
# ---------------- Gradio UI ----------------
|
101 |
background_css = """
|
102 |
.gradio-container {
|
103 |
background-image: url('https://huggingface.co/spaces/dnzblgn/Sarcasm_Detection/resolve/main/image.png');
|
|
|
105 |
background-position: center;
|
106 |
color: white;
|
107 |
}
|
|
|
108 |
.gr-input, .gr-textbox {
|
109 |
+
background-color: rgba(255, 255, 255, 0.3) !important;
|
110 |
border-radius: 10px;
|
111 |
padding: 10px;
|
112 |
color: black !important;
|
113 |
}
|
|
|
114 |
h1, h2, p {
|
115 |
+
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.8);
|
116 |
}
|
117 |
"""
|
118 |
|
|
|
119 |
with gr.Blocks(css=background_css) as interface:
|
120 |
gr.Markdown(
|
121 |
"""
|
|
|
126 |
|
127 |
with gr.Tab("Text Input"):
|
128 |
with gr.Row():
|
129 |
+
text_input = gr.Textbox(lines=10, label="Enter Sentences", placeholder="Enter one or more sentences, each on a new line.")
|
|
|
|
|
|
|
|
|
130 |
result_output = gr.Textbox(label="Results", lines=10, interactive=False)
|
131 |
analyze_button = gr.Button("π Analyze")
|
|
|
132 |
analyze_button.click(process_text_pipeline, inputs=text_input, outputs=result_output)
|
133 |
|
134 |
with gr.Tab("Upload Text File"):
|
|
|
141 |
|
142 |
file_input.change(process_file, inputs=file_input, outputs=file_output)
|
143 |
|
144 |
+
with gr.Tab("Try Other Sentiment Models (No Sarcasm)"):
|
145 |
+
with gr.Row():
|
146 |
+
other_model_selector = gr.Dropdown(
|
147 |
+
choices=list(additional_models.keys()),
|
148 |
+
label="Choose a Sentiment Model"
|
149 |
+
)
|
150 |
+
with gr.Row():
|
151 |
+
model_text_input = gr.Textbox(lines=5, label="Enter Sentence")
|
152 |
+
model_result_output = gr.Textbox(label="Sentiment", lines=3, interactive=False)
|
153 |
+
|
154 |
+
run_model_btn = gr.Button("Run")
|
155 |
+
run_model_btn.click(run_sentiment_with_selected_model, inputs=[model_text_input, other_model_selector], outputs=model_result_output)
|
156 |
+
|
157 |
+
# ---------------- Run App ----------------
|
158 |
if __name__ == "__main__":
|
159 |
interface.launch()
|