dnzblgn's picture
Update app.py
2f3e5ba verified
raw
history blame
2.23 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load models and tokenizers
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
sarcasm_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base", use_fast=False)
sentiment_tokenizer = AutoTokenizer.from_pretrained("facebook/roberta-base", use_fast=False)
def process_text_pipeline(user_input):
sentences = user_input.split("\n")
results = []
for sentence in sentences:
# Sentiment analysis
sentiment_inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
sentiment_outputs = sentiment_model(**sentiment_inputs)
sentiment_logits = sentiment_outputs.logits
sentiment_class = torch.argmax(sentiment_logits, dim=-1).item()
sentiment = "Positive" if sentiment_class == 0 else "Negative"
# Sarcasm detection for positive sentences
if sentiment == "Positive":
sarcasm_inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
sarcasm_outputs = sarcasm_model(**sarcasm_inputs)
sarcasm_logits = sarcasm_outputs.logits
sarcasm_class = torch.argmax(sarcasm_logits, dim=-1).item()
if sarcasm_class == 1: # Sarcasm detected
sentiment = "Negative (Sarcasm detected)"
results.append(f"{sentence}: {sentiment}")
return "\n".join(results)
# Gradio UI
interface = gr.Interface(
fn=process_text_pipeline,
inputs=gr.Textbox(lines=10, placeholder="Enter one or more sentences, each on a new line."),
outputs="text",
title="Sarcasm Detection for Customer Reviews",
description="This web app analyzes the sentiment of customer reviews and detects sarcasm for positive reviews.",
)
# Run interface
if __name__ == "__main__":
interface.launch()