Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,11 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
3 |
import torch
|
4 |
|
5 |
# Load models and tokenizers
|
6 |
-
sarcasm_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
|
7 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
8 |
-
sentiment_tokenizer = AutoTokenizer.from_pretrained("facebook/roberta-base")
|
9 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
|
|
|
|
|
|
10 |
|
11 |
def process_text_pipeline(user_input):
|
12 |
sentences = user_input.split("\n")
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load models and tokenizers
|
|
|
6 |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
|
|
|
7 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
|
8 |
+
sarcasm_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base", use_fast=False)
|
9 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained("facebook/roberta-base", use_fast=False)
|
10 |
+
|
11 |
|
12 |
def process_text_pipeline(user_input):
|
13 |
sentences = user_input.split("\n")
|