Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load models and tokenizers | |
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews") | |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews") | |
sarcasm_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base", use_fast=False) | |
sentiment_tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", use_fast=False) | |
# Function to analyze sentiment | |
def analyze_sentiment(sentence): | |
inputs = sentiment_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = sentiment_model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
sentiment_mapping = {1: "Negative", 0: "Positive"} | |
return sentiment_mapping[predicted_class] | |
# Function to detect sarcasm | |
def detect_sarcasm(sentence): | |
inputs = sarcasm_tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = sarcasm_model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm" | |
# Combined function for processing sentences | |
def process_text_pipeline(text): | |
sentences = text.split("\n") # Split text into multiple sentences | |
processed_sentences = [] | |
for sentence in sentences: | |
sentiment = analyze_sentiment(sentence.strip()) | |
if sentiment == "Negative": | |
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative") | |
else: | |
sarcasm_result = detect_sarcasm(sentence.strip()) | |
if sarcasm_result == "Sarcasm": | |
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative (Sarcastic Positive)") | |
else: | |
processed_sentences.append(f"'{sentence}' -> Sentiment: Positive") | |
return "\n".join(processed_sentences) | |
# Gradio UI | |
interface = gr.Interface( | |
fn=process_text_pipeline, | |
inputs=gr.Textbox(lines=10, placeholder="Enter one or more sentences, each on a new line."), | |
outputs="text", | |
title="Sarcasm Detection for Customer Reviews", | |
description="This web app analyzes customer reviews for sentiment and detects sarcasm for positive reviews.", | |
) | |
# Run the interface | |
if __name__ == "__main__": | |
interface.launch() |