Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,42 +27,27 @@ def detect_sarcasm(sentence):
|
|
| 27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
| 29 |
|
| 30 |
-
# Combined function for
|
| 31 |
def process_text_pipeline(text):
|
| 32 |
sentences = text.split("\n") # Split text into multiple sentences
|
| 33 |
processed_sentences = []
|
| 34 |
|
| 35 |
for sentence in sentences:
|
| 36 |
sentiment = analyze_sentiment(sentence.strip())
|
| 37 |
-
if sentiment == "
|
|
|
|
|
|
|
| 38 |
sarcasm_result = detect_sarcasm(sentence.strip())
|
| 39 |
if sarcasm_result == "Sarcasm":
|
| 40 |
-
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative (
|
| 41 |
else:
|
| 42 |
processed_sentences.append(f"'{sentence}' -> Sentiment: Positive")
|
| 43 |
-
else:
|
| 44 |
-
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative")
|
| 45 |
|
| 46 |
return "\n".join(processed_sentences)
|
| 47 |
|
| 48 |
-
# Simple user interface for sarcasm detection
|
| 49 |
-
def sarcasm_detection_interface(input_text):
|
| 50 |
-
sentences = input_text.split("\n")
|
| 51 |
-
predictions = []
|
| 52 |
-
|
| 53 |
-
for sentence in sentences:
|
| 54 |
-
sentiment = analyze_sentiment(sentence.strip())
|
| 55 |
-
if sentiment == "Negative":
|
| 56 |
-
predictions.append(f"'{sentence}' -> Not Sarcastic (Direct Negative Sentiment)")
|
| 57 |
-
else:
|
| 58 |
-
sarcasm_result = detect_sarcasm(sentence.strip())
|
| 59 |
-
predictions.append(f"'{sentence}' -> {sarcasm_result}")
|
| 60 |
-
|
| 61 |
-
return "\n".join(predictions)
|
| 62 |
-
|
| 63 |
# Gradio UI
|
| 64 |
interface = gr.Interface(
|
| 65 |
-
fn=
|
| 66 |
inputs=gr.Textbox(lines=10, placeholder="Enter one or more sentences, each on a new line."),
|
| 67 |
outputs="text",
|
| 68 |
title="Sarcasm Detection for Customer Reviews",
|
|
|
|
| 27 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 28 |
return "Sarcasm" if predicted_class == 1 else "Not Sarcasm"
|
| 29 |
|
| 30 |
+
# Combined function for processing sentences
|
| 31 |
def process_text_pipeline(text):
|
| 32 |
sentences = text.split("\n") # Split text into multiple sentences
|
| 33 |
processed_sentences = []
|
| 34 |
|
| 35 |
for sentence in sentences:
|
| 36 |
sentiment = analyze_sentiment(sentence.strip())
|
| 37 |
+
if sentiment == "Negative":
|
| 38 |
+
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative")
|
| 39 |
+
else:
|
| 40 |
sarcasm_result = detect_sarcasm(sentence.strip())
|
| 41 |
if sarcasm_result == "Sarcasm":
|
| 42 |
+
processed_sentences.append(f"'{sentence}' -> Sentiment: Negative (Sarcastic Positive)")
|
| 43 |
else:
|
| 44 |
processed_sentences.append(f"'{sentence}' -> Sentiment: Positive")
|
|
|
|
|
|
|
| 45 |
|
| 46 |
return "\n".join(processed_sentences)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Gradio UI
|
| 49 |
interface = gr.Interface(
|
| 50 |
+
fn=process_text_pipeline,
|
| 51 |
inputs=gr.Textbox(lines=10, placeholder="Enter one or more sentences, each on a new line."),
|
| 52 |
outputs="text",
|
| 53 |
title="Sarcasm Detection for Customer Reviews",
|