Spaces:
Running
Running
File size: 47,891 Bytes
770f5f7 169dbe5 5b2c1c6 839c46d 560c73e 1a61bb7 1a4edd5 b678600 ee17b4a 49c7033 8807f4f 1a4edd5 839c46d 1e70f16 8a2e5c6 839c46d 1a4edd5 839c46d 4c6a845 839c46d 169dbe5 1a61bb7 4c6a845 1a61bb7 62eeda6 997c7aa aec34f1 997c7aa 292372c 3fe3655 292372c b678600 8416c88 402fdca 8807f4f 997c7aa 402fdca 997c7aa ee17b4a d891f63 997c7aa ee17b4a d891f63 c1d0c1d 402fdca 997c7aa 402fdca d891f63 402fdca 997c7aa d891f63 cd06238 d891f63 cd06238 d891f63 cd06238 402fdca 62eeda6 9e43845 62eeda6 49c7033 cd06238 49c7033 d891f63 ee17b4a d891f63 ee17b4a d891f63 9e43845 49c7033 cd06238 d891f63 49c7033 d891f63 49c7033 cd06238 d891f63 cd06238 d891f63 62eeda6 bdfde99 62eeda6 bdfde99 62eeda6 bdfde99 1a4edd5 62eeda6 bdfde99 292372c 62eeda6 292372c bdfde99 d891f63 bdfde99 1a4edd5 ee17b4a 9e43845 ee17b4a 1a4edd5 1a61bb7 169dbe5 1a61bb7 169dbe5 4c6a845 169dbe5 1a61bb7 839c46d c152ad6 8097a9d 930c640 839c46d c152ad6 8097a9d c152ad6 8097a9d c152ad6 8097a9d 839c46d 62faa72 e5dc535 62eeda6 839c46d 169dbe5 839c46d 62eeda6 3a2eaed 839c46d 997c7aa 62eeda6 49c7033 839c46d 997c7aa 839c46d 201579d 839c46d 5511924 839c46d 5511924 62eeda6 839c46d f699477 62eeda6 997c7aa ee17b4a 997c7aa 49c7033 9e43845 997c7aa cd06238 d891f63 cd06238 d891f63 ee17b4a d891f63 49c7033 9e43845 49c7033 997c7aa 1a4edd5 62eeda6 839c46d 1a61bb7 1e70f16 8a2e5c6 4c09467 1a61bb7 1e70f16 8a2e5c6 4c09467 2f30f18 1e70f16 1a61bb7 7d40ba4 1a61bb7 8807f4f 839c46d 3a2eaed 169dbe5 2f30f18 1a61bb7 1e70f16 8a2e5c6 e496712 1e70f16 839c46d 1e70f16 62faa72 0fb4a4f 62faa72 3a2eaed 62faa72 62eeda6 169dbe5 1a61bb7 8807f4f 1e70f16 8807f4f 169dbe5 8807f4f 839c46d 997c7aa 839c46d 1e70f16 4c09467 1e70f16 e5dc535 839c46d 62eeda6 839c46d c152ad6 839c46d 4c6a845 839c46d 4c6a845 839c46d bad15d2 839c46d 4c6a845 839c46d 5511924 839c46d 5511924 839c46d 5511924 839c46d 560c73e 839c46d f699477 839c46d f699477 839c46d f699477 cd53d09 560c73e a509fbe 560c73e 0ac5c98 b34c7b3 a509fbe 560c73e a509fbe 62faa72 4411fd0 62faa72 560c73e 62faa72 c152ad6 8097a9d ead2b78 8097a9d 560c73e b34c7b3 560c73e b34c7b3 560c73e c152ad6 997c7aa 7d40ba4 c152ad6 7d40ba4 62faa72 7d40ba4 62faa72 5511924 62faa72 5511924 c152ad6 b34c7b3 997c7aa c152ad6 62faa72 5511924 62faa72 5511924 62faa72 0fb4a4f 62faa72 4c6a845 62faa72 0fb4a4f 62faa72 2f3fad7 62faa72 b56832d 62faa72 c152ad6 cd53d09 b34c7b3 839c46d 62faa72 839c46d b34c7b3 839c46d bad15d2 839c46d 1a61bb7 839c46d 4c6a845 839c46d 1ed2e33 4c6a845 1ed2e33 839c46d c152ad6 839c46d c152ad6 839c46d 560c73e 5511924 bad15d2 d891f63 839c46d bad15d2 62faa72 62eeda6 49c7033 62eeda6 4c6a845 62eeda6 62faa72 62eeda6 839c46d bad15d2 560c73e c152ad6 62faa72 839c46d 6c56d96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 |
import os
import gradio as gr
import openai
#from numpy._core.defchararray import endswith, isdecimal, startswith
from openai import OpenAI
from dotenv import load_dotenv
from pathlib import Path
from time import sleep
import audioread
import queue
import threading
from glob import glob
import copy
import base64
import json
from PIL import Image
from io import BytesIO
from pydantic import BaseModel
import pprint
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
import pytz
import math
import numpy as np
# import matplotlib.pyplot as plt
from pylatexenc.latex2text import LatexNodes2Text
load_dotenv(override=True)
key = os.getenv('OPENAI_API_KEY')
users = os.getenv('LOGNAME')
unames = users.split(',')
pwds = os.getenv('PASSWORD')
pwdList = pwds.split(',')
DEEPSEEK_KEY=os.getenv('DEEPSEEK_KEY')
GROQ_KEY=os.getenv('GROQ_KEY')
site = os.getenv('SITE')
if site == 'local':
dp = Path('./data')
dp.mkdir(exist_ok=True)
dataDir = './data/'
else:
dp = Path('/data')
dp.mkdir(exist_ok=True)
dataDir = '/data/'
stock_data_path = dataDir + 'Stocks.txt'
speak_file = dataDir + "speek.wav"
# client = OpenAI(api_key = key)
#digits = ['zero: ','one: ','two: ','three: ','four: ','five: ','six: ','seven: ','eight: ','nine: ']
abbrevs = {'St. ' : 'Saint ', 'Mr. ': 'mister ', 'Mrs. ':'mussus ', 'Mr. ':'mister ', 'Ms. ':'mizz '}
special_chat_types = ['math', 'logic']
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
def Client():
return OpenAI(api_key = key)
def test_plot_df():
data = {
"month": ['2024-01','2024-02','2024-03'],
"value": [22.4, 30.1, 25.6]
}
return pd.DataFrame(data)
def md(txt):
return str(txt).replace('```', ' ').replace(' ', ' ').replace(' ', ' ').replace(' ', ' ').replace('\n','<br>')
# return txt
def etz_now():
eastern = pytz.timezone('US/Eastern')
ltime = datetime.now(eastern)
return ltime
def date_from_utime(utime):
ts = int(utime)
dt = datetime.utcfromtimestamp(ts)
eastern = pytz.timezone('US/Eastern')
return dt.astimezone(eastern).strftime('%Y-%m-%d')
def convert_latex_math(text):
lines = text.split('\n')
start_line = False
out_txt = ''
for line in lines:
if len(line) == 0:
out_txt += '\n'
continue
else:
if line == r'\]':
continue
if line == r'\[':
start_line = True
continue
if start_line:
line = '\n' + LatexNodes2Text().latex_to_text(line.strip())
start_line = False
if line.startswith(r'\['):
loc = line.find(r'\]')
if loc > 0:
latex_code = line[2:loc]
line = '\n' + LatexNodes2Text().latex_to_text(latex_code)
out_txt += (line + '\n')
return out_txt
def stock_list():
rv = ''
with open(stock_data_path, 'rt') as fp:
lines = fp.readlines()
for line in lines:
(name, symbol, shares) = line.rstrip().split(',')
name = name.strip()
symbol = symbol.strip()
rv += f'{symbol} {name}\n'
return rv
def get_stock_list():
stock_list = {}
with open(stock_data_path, 'rt') as fp:
lines = fp.readlines()
for line in lines:
(name, symbol, shares) = line.rstrip().split(',')
stock_list[symbol.strip()] = (name.strip(),shares.strip())
return stock_list
def get_stock_news(search_symbol):
fuzzy = True
have_symbol = False
search_symbol = search_symbol.strip().upper()
stock_list = get_stock_list()
search_term = search_symbol
if search_symbol in stock_list.keys():
have_symbol = True
(search_term, shares) = stock_list[search_symbol]
try:
news = yf.Search(search_term, news_count=5, enable_fuzzy_query=fuzzy).news
except:
return (f'No results for search term {search_term}, check spelling', None)
rv = ''
for item in news:
rv += f'Title: {item["title"]}\n'
rv += f'Publisher: {item["publisher"]}\n'
rv += f'Date published: {date_from_utime(item["providerPublishTime"])}\n'
rv += f'Link: [URL]({item["link"]})\n\n'
if have_symbol:
(plot_df, ymax, deltas) = stock_week_df(search_symbol)
else:
(plot_df, ymax, deltas) = (pd.DataFrame(), 0.0, (0.0, 0.0, 0.0))
return (rv, plot_df, ymax, deltas)
def stock_history_df(num_weeks):
values = []
dates = []
xmax = 0
for offset in range(num_weeks+1):
(value, date) = get_stock_report(False, offset)
# date = date[5:]
values.append(value)
dates.append(date)
if float(value) > xmax:
xmax = float(value)
values.reverse()
dates.reverse()
data = {
"date": dates,
"value" : values
}
return (pd.DataFrame(data), f'{int(xmax + 10000)}')
# def make_mp_figure(dates, values, fit_values, ymax = 0.0):
# npdates = np.asarray(dates)
# npvals = np.asarray(values)
# npfits = np.asarray(fit_values)
# plt_format = '-'
# fig = plt.figure(layout="constrained", figsize=(6,2))
# ax = fig.add_subplot(111)
# tics = []
# labels = []
# i = len(dates) - 1
# while i >= 0:
# tics.append(i)
# labels.append(dates[i])
# i -= 5
# # tics = list(range(0,len(dates),5))
# # labels = dates[0::5]
# ax.set_xticks(tics, labels = labels)
# ax.plot(npdates, npvals, plt_format)
# ax.plot(npdates, npfits, plt_format)
# ax.set_ylim(0.0, ymax*1.05)
# # ax.set_xlim(dates[0], dates[-1:])
# return fig
# def lms_fit_trend(dates, values):
# # days = []
# # fit_data = []
# days = list(range(0, len(dates)))
# fit = np.polyfit(days, values, 1)
# delta = len(dates) * float(fit[0])
# avg = float(fit[1]) + 0.5 * delta
# pct_delta = 100 * delta / avg
# # for day in days:
# # fit_data.append(float(fit[0]) * day + float(fit[1]) )
# # return fit_data
# return pct_delta
def stock_deltas(values):
num = len(values)
month_end_avg = float(np.average(np.array(values[-3:])))
month_start_avg = float(np.average(np.array(values[0:4])))
week_start_avg = float(np.average(np.array(values[-7:-4])))
week_end_avg = float(np.average(np.array(values[-2:])))
month_delta = 100 * (month_end_avg - month_start_avg)/month_start_avg
week_delta = 100 * (week_end_avg - week_start_avg)/week_start_avg
daily_delta = 100 * ((float(values[num-1])/float(values[num-2])) - 1.0)
# avg = np.average(npa)
return (month_delta, week_delta, daily_delta)
def stock_week_df(symbol):
try:
dates = []
values = []
ymax = 0
etime = etz_now()
if etime.hour >= 16:
etime = etime + timedelta(days=1)
week_ago = etime - timedelta(days=40) # was 8
end = etime.strftime('%Y-%m-%d')
start = week_ago.strftime('%Y-%m-%d')
df = yf.download(symbol.upper(),
start = start,
end = end,
progress = False,
)
vals2d = df.values.tolist()
valsTxt = []
numDays = len(vals2d)
for i in range(numDays):
valsTxt.append(vals2d[i][0])
for val in valsTxt:
v = round(float(val),2)
values.append(v)
if v > ymax:
ymax = v
for row in df.index:
dates.append(row.strftime('%Y-%m-%d'))
# fit_data = lms_fit(dates, values)
# pct_delta = lms_fit_trend(dates, values)
deltas = stock_deltas(values)
data = {
"date": dates,
"value" : values,
# "fit" : fit_data
}
# fig = make_mp_figure(dates, values, fit_data, ymax)
return (pd.DataFrame(data), ymax, deltas)
except:
return (pd.DataFrame(), ymax, (0.0, 0.0, 0.0))
def get_stock_report(verbose = True, offset = 0):
try:
stock_data = {}
global stock_data_path
error_msg = ''
with open(stock_data_path, 'rt') as fp:
lines = fp.readlines()
for line in lines:
(name, symbol, shares) = line.rstrip().split(',')
name = name.strip()
symbol = symbol.strip()
shares = shares.strip()
stock_data[symbol] = {"symbol": symbol, "name": name, "shares": shares, "closing": '0'}
for symbol in stock_data.keys():
(closing_price, closing_date) = get_last_closing(symbol, offset)
if closing_price == 0:
error_msg += f'Error getting closing for {symbol}\n'
stock_data[symbol]['closing'] = f'{closing_price:.2f}'
total_value = 0.0
if verbose:
rv = f'At closing on {closing_date}:\n'
for item in stock_data.values():
rv += str(item) + '\n'
total_value += float(item['closing']) * float(item['shares'])
rv += (f'\nTotal value = {total_value:.2f}\n')
if len(error_msg) > 0:
rv += error_msg
rv += f'Eastern time is: {etz_now()}'
else:
for item in stock_data.values():
total_value += float(item['closing']) * float(item['shares'])
return (total_value, closing_date)
except:
rv = 'Error getting stock report'
return rv
def get_last_closing(symbol, offset=0, timeout=10):
try:
etime = etz_now()
if etime.hour >= 16:
etime = etime + timedelta(days=1)
if offset > 0:
etime = etime - timedelta(weeks=offset)
five_days_ago = etime - timedelta(days=6)
end = etime.strftime('%Y-%m-%d')
start = five_days_ago.strftime('%Y-%m-%d')
df = yf.download(symbol,
start = start,
end = end,
progress = False,
timeout=timeout,
)
# print(df)
closing_date = 'unknown'
data_top = df.tail(1)
for row in data_top.index:
closing_date = row.strftime('%Y-%m-%d')
# print(closing_date)
return (df.iat[-1,0], closing_date)
except:
return (0.0, "0000-00-00")
def get_total_daily_closing_sequence(num_days):
try:
first_loop = True
max_val = 0.0
stock_list = get_stock_list()
symbols = [s for s in stock_list.keys()]
# symbols = symbols[8:10]
etime = etz_now()
if etime.hour >= 16:
etime = etime + timedelta(days=1)
end = etime.strftime('%Y-%m-%d')
start_time = etime - timedelta(days = num_days)
start = start_time.strftime('%Y-%m-%d')
df = yf.download(symbols,
start = start,
end = end,
progress = False,
)
# val2d = df.values.tolist()
dates = []
for row in df.index:
dates.append(row.strftime('%Y-%m-%d'))
# columns = list(df.columns.values)
# cvals = df[columns[0]].tolist()
for sym in symbols:
(name, shares) = stock_list[sym]
values = df[('Close', sym)].tolist()
n = len(values)
for i in range(n):
if math.isnan(float(values[i])):
if i == 0:
values[0] = values[1]
else:
values[i] = values[i-1]
if first_loop:
first_loop = False
total_values = values.copy()
for i in range(n):
total_values[i] = float(total_values[i]) * float(shares)
else:
for i in range(n):
total_values[i] += (float(values[i]) * float(shares))
for i in range(n):
total_values[i] = round(total_values[i], 2)
if total_values[i] > max_val:
max_val = total_values[i]
data = {
"date": dates,
"value" : total_values
}
return (pd.DataFrame(data), max_val)
except:
return (pd.DataFrame(), 0.0)
def get_daily_closing_sequence(symbol, num_days):
try:
dates = []
values = []
etime = etz_now()
if etime.hour >= 16:
etime = etime + timedelta(days=1)
end = etime.strftime('%Y-%m-%d')
start_time = etime - timedelta(days = num_days)
start = start_time.strftime('%Y-%m-%d')
df = yf.download(symbol,
start = start,
end = end,
progress = False,
)
vals2d = df.values.tolist()
valsTxt = []
values = [round(float(vals2d[i][0]),2) for i in range(len(vals2d))]
for row in df.index:
dates.append(row.strftime('%Y-%m-%d'))
return(dates, values)
except:
return([],[])
def create_stock_data_file(txt):
with open(stock_data_path, 'wt') as fp:
fp.write(txt)
def solve(prompt, chatType):
tokens_in = 0
tokens_out = 0
tokens = 0
if chatType == 'math':
instruction = "You are a helpful math tutor. Guide the user through the solution step by step."
elif chatType == "logic":
instruction = "you are an expert in logic and reasoning. Guide the user through the solution step by step"
try:
completion = Client().beta.chat.completions.parse(
model = 'gpt-4o-2024-08-06',
messages = [
{"role": "system", "content": instruction},
{"role": "user", "content": prompt}
],
response_format=MathReasoning,
max_tokens = 2000
)
tokens_in = completion.usage.prompt_tokens
tokens_out = completion.usage.completion_tokens
tokens = completion.usage.total_tokens
msg = completion.choices[0].message
if msg.parsed:
dr = msg.parsed.model_dump()
response = pprint.pformat(dr)
elif msg.refusal:
response = msg.refusal
except Exception as e:
if type(e) == openai.LengthFinishReasonError:
response = 'Too many tokens'
else:
response = str(e)
return (response, tokens_in, tokens_out, tokens)
def genUsageStats(do_reset=False):
result = []
ttotal4o_in = 0
ttotal4o_out = 0
ttotal4mini_in = 0
ttotal4mini_out = 0
totalAudio = 0
totalSpeech = 0
totalImages = 0
totalHdImages = 0
if do_reset:
dudPath = dataDir + '_speech.txt'
if os.path.exists(dudPath):
os.remove(dudPath)
for user in unames:
tokens4o_in = 0
tokens4o_out = 0
tokens4mini_in = 0
tokens4mini_out = 0
fp = dataDir + user + '_log.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(u, t) = line.split(':')
(t, m) = t.split('-')
(tin, tout) = t.split('/')
incount = int(tin)
outcount = int(tout)
if 'mini' in m:
tokens4mini_in += incount
tokens4mini_out += outcount
ttotal4mini_in += incount
ttotal4mini_out += outcount
else:
tokens4o_in += incount
tokens4o_out += outcount
ttotal4o_in += incount
ttotal4o_out += outcount
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading stats for user: {user}'
userAudio = 0
fp = dataDir + user + '_audio.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(dud, len) = line.split(':')
userAudio += int(len)
totalAudio += int(userAudio)
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading audio stats for user: {user}'
userSpeech = 0
fp = dataDir + user + '_speech.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(dud, len) = line.split(':')
userSpeech += int(len)
totalSpeech += int(userSpeech)
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading speech stats for user: {user}'
user_images = 0
user_hd_images = 0
fp = image_count_path(user)
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
x = line.strip()
if x == 'hd':
user_hd_images += 1
totalHdImages += 1
else:
user_images += 1
totalImages += 1
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading image gen stats for user: {user}'
result.append([user, f'{tokens4mini_in}/{tokens4mini_out}', f'{tokens4o_in}/{tokens4o_out}', f'audio:{userAudio}',f'speech:{userSpeech}', f'images:{user_images}/{user_hd_images}'])
result.append(['totals', f'{ttotal4mini_in}/{ttotal4mini_out}', f'{ttotal4o_in}/{ttotal4o_out}', f'audio:{totalAudio}',f'speech:{totalSpeech}', f'images:{totalImages}/{totalHdImages}'])
return result
def new_conversation(user):
clean_up(user) # .wav files
flist = glob(f'{dataDir}{user}.png')
flist.extend(glob(f'{dataDir}{user}_image.b64'))
for fpath in flist:
if os.path.exists(fpath):
os.remove(fpath)
return [None, [], gr.Markdown(value='', label='Dialog', container=True), gr.Image(visible=False, value=None), gr.Image(visible=False, value=None), '',
gr.LinePlot(visible=False)]
def updatePassword(txt):
password = txt.lower().strip()
return [password, "*********"]
# def parse_math(txt):
# ref = 0
# loc = txt.find(r'\(')
# if loc == -1:
# return txt
# while (True):
# loc2 = txt[ref:].find(r'\)')
# if loc2 == -1:
# break
# loc = txt[ref:].find(r'\(')
# if loc > -1:
# loc2 += 2
# slice = txt[ref:][loc:loc2]
# frag = lconv.convert(slice)
# txt = txt[:loc+ref] + frag + txt[loc2+ref:]
# ref = len(txt[ref:loc]) + len(frag)
# return txt
def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_image_file='', plot=None):
image_gen_model = 'gpt-4o-2024-08-06'
user_window = user_window.lower().strip()
isBoss = False
if not response:
response = ''
plot = gr.LinePlot(visible=False)
# plot = gr.Plot(visible=False)
if user_window == unames[0] and pwd_window == pwdList[0]:
isBoss = True
if prompt == 'stats':
response = genUsageStats()
return [past, md(response), None, gptModel, uploaded_image_file, plot]
if prompt == 'reset':
response = genUsageStats(True)
return [past, md(response), None, gptModel, uploaded_image_file, plot]
if prompt.startswith('gpt4'):
gptModel = 'gpt-4o-2024-08-06'
prompt = prompt[5:]
if prompt.startswith("clean"):
user = prompt[6:]
response = f'cleaned all .wav and .b64 files for {user}'
final_clean_up(user, True)
return [past, response, None, gptModel, uploaded_image_file, plot]
if prompt.startswith('files'):
(log_cnt, wav_cnt, other_cnt, others, log_list) = list_permanent_files()
response = f'{log_cnt} log files\n{wav_cnt} .wav files\n{other_cnt} Other files:\n{others}\nlogs: {str(log_list)}'
return [past, response, None, gptModel, uploaded_image_file, plot]
if prompt.startswith('stock'):
args = prompt.split(' ')
num = len(args)
if num == 1:
response = stock_list()
return [past, md(response), None, gptModel, uploaded_image_file, plot]
elif num == 2:
response = get_stock_report()
if args[1] == 'value':
return [past, md(response), None, gptModel, uploaded_image_file, plot]
elif args[1] == 'history':
(plot_df, ymax) = get_total_daily_closing_sequence(40) #stock_history_df(12)
# ymax = float(ymax)
return [past, md(response), None, gptModel, uploaded_image_file, # plot]
gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270,
y_lim=[500000, 700000], label="Portfolio Value History")]
elif num >= 3:
if args[1] == 'news':
symbol = ' '.join(args[2:])
(response, plot_df, ymax, (dm, dw, dd)) = get_stock_news(symbol)
ymax *= 1.1
mdtxt = md(f'News for {symbol}:\nTrends: Month = {dm:.1f}%, Week = {dw:.1f}%, Day = {dd:.1f}%\n\n' + response)
if plot_df.empty:
return [past, mdtxt, None, gptModel, uploaded_image_file, plot]
else:
return [past, mdtxt, None, gptModel, uploaded_image_file, #gr.Plot(plot_df, visible=True)]
gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270,
y_lim=[0, ymax],label=f"{symbol.upper()} Recent Prices",
color_map={''})]
# elif arg[1] == 'history':
# symbol = arg[2]
# response = 'ok' # get_
# if prompt.startswith('stock values'):
# response = get_stock_report()
# if 'history' in prompt:
# (plot_df, ymax) = stock_history_df(12)
# ymax = float(ymax)
# return [past, response, None, gptModel, uploaded_image_file,
# gr.LinePlot(plot_df, x="date", y="value", visible=True,
# y_lim=[500000, 700000], label="Portfolio Value History")]
# else:
# return [past, response, None, gptModel, uploaded_image_file, plot]
# if prompt.startswith('stock news'):
# symbol = prompt[11:]
# response = get_stock_news(symbol)
# return [past, response, None, gptModel, uploaded_image_file, plot]
if prompt.startswith('stockload'):
create_stock_data_file(prompt[9:].lstrip())
return [past, 'Stock data file created', None, gptModel, uploaded_image_file, plot]
if user_window in unames and pwd_window == pwdList[unames.index(user_window)]:
chatType = 'normal'
deepseek = False
using_groq = False
reasoning = False
prompt = prompt.strip()
if prompt.lower().startswith('dsr1 '):
deepseek = True
ds_model = 'deepseek-ai/DeepSeek-R1'
prompt = prompt[5:]
elif prompt.lower().startswith('ds1.5 '):
deepseek = True
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B'
prompt = prompt[6:]
elif prompt.lower().startswith('ds14 '):
deepseek = True
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B'
prompt = prompt[5:]
elif prompt.lower().startswith('ds70 '):
deepseek = True
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B'
prompt = prompt[5:]
elif prompt.lower().startswith('ds70g '):
deepseek = True
using_groq = True
ds_model = 'deepseek-r1-distill-llama-70b'
prompt = prompt[6:]
elif prompt.lower().startswith('o1m '):
reasoning = True
gptModel = 'o1-mini'
prompt = prompt[4:] + \
'. Provide a detailed step-by-step description of your reasoning. Do not use Latex for math expressions.'
elif prompt.lower().startswith('solve'):
prompt = 'How do I solve ' + prompt[5:] + ' Do not use Latex for math expressions.'
chatType = 'math'
elif prompt.lower().startswith('puzzle'):
chatType = 'logic'
prompt = prompt[6:]
if deepseek:
prompt = prompt + '. Do not use Latex for math expressions.'
past.append({"role":"user", "content":prompt})
gen_image = (uploaded_image_file != '')
if chatType in special_chat_types:
(reply, tokens_in, tokens_out, tokens) = solve(prompt, chatType)
final_text = reply
reporting_model = image_gen_model
elif not gen_image:
if deepseek:
if using_groq:
client = OpenAI(api_key=GROQ_KEY, base_url='https://api.groq.com/openai/v1')
completion = client.chat.completions.create(
temperature=0.6,
model= ds_model,
messages=past)
reporting_model='deepseek70-groq'
else:
client = OpenAI(api_key=DEEPSEEK_KEY, base_url='https://api.together.xyz/v1')
completion = client.chat.completions.create(
temperature=0.6,
model= ds_model,
messages=past)
reporting_model='deepseek-together-' + ds_model[-3:].replace('.5B','1.5B')
else:
completion = Client().chat.completions.create(model=gptModel,
messages=past)
reporting_model = gptModel
else:
(completion, msg) = analyze_image(user_window, image_gen_model, prompt)
uploaded_image_file= ''
reporting_model = image_gen_model
if not msg == 'ok':
return [past, msg, None, gptModel, uploaded_image_file, plot]
if not chatType in special_chat_types:
reply = completion.choices[0].message.content
# if 'groq' in reporting_model:
if deepseek:
reply = convert_latex_math(reply)
final_text = reply
if deepseek:
loc1 = reply.find('<think>')
if loc1 > -1:
loc2 = reply.find('</think>')
if loc2 > loc1:
final_text = reply[loc2 + 8:]
reply = reply.replace('<think>','\n***Thinking***\n').replace('</think>','\n***Done thinking***\n')
tokens_in = completion.usage.prompt_tokens
tokens_out = completion.usage.completion_tokens
tokens = completion.usage.total_tokens
response += md("\n\n***YOU***: " + prompt + "\n***GPT***: " + reply)
if isBoss:
response += md(f"\n{reporting_model}: tokens in/out = {tokens_in}/{tokens_out}")
if tokens > 40000:
response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON."
past.append({"role":"assistant", "content": final_text})
if not deepseek and not reasoning:
accessOk = False
for i in range(3):
try:
dataFile = new_func(user_window)
with open(dataFile, 'a') as f:
m = '4o'
if 'mini' in reporting_model:
m = '4omini'
f.write(f'{user_window}:{tokens_in}/{tokens_out}-{m}\n')
accessOk = True
break
except Exception as e:
sleep(3)
if not accessOk:
response += f"\nDATA LOG FAILED, path = {dataFile}"
return [past, response , None, gptModel, uploaded_image_file, plot]
else:
return [[], "User name and/or password are incorrect", prompt, gptModel, uploaded_image_file, plot]
def new_func(user):
dataFile = dataDir + user + '_log.txt'
return dataFile
def image_count_path(user):
fpath = dataDir + user + '_image_count.txt'
return fpath
def transcribe(user, pwd, fpath):
user = user.lower().strip()
pwd = pwd.lower().strip()
if not (user in unames and pwd in pwdList):
return 'Bad credentials'
with audioread.audio_open(fpath) as audio:
duration = int(audio.duration)
if duration > 0:
with open(dataDir + user + '_audio.txt','a') as f:
f.write(f'audio:{str(duration)}\n')
with open(fpath,'rb') as audio_file:
transcript = Client().audio.transcriptions.create(
model='whisper-1', file = audio_file ,response_format = 'text' )
reply = transcript
return str(reply)
def pause_message():
return "Audio input is paused. Resume or Stop as desired"
# def gen_output_audio(txt):
# if len(txt) < 10:
# txt = "This dialog is too short to mess with!"
# response = Client().audio.speech.create(model="tts-1", voice="fable", input=txt)
# with open(speak_file, 'wb') as fp:
# fp.write(response.content)
# return speak_file
# def set_speak_button(txt):
# vis = False
# if txt and len(txt) > 2:
# vis = True
# return gr.Button(visible=vis)
def update_user(user_win):
user_win = user_win.lower().strip()
user = 'unknown'
for s in unames:
if user_win == s:
user = s
break
return [user, user]
def speech_worker(chunks=[],q=[]):
for chunk in chunks:
fpath = q.pop(0)
response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav')
with open(fpath, 'wb') as fp:
fp.write(response.content)
def gen_speech_file_names(user, cnt):
rv = []
for i in range(0, cnt):
rv.append(dataDir + f'{user}_speech{i}.wav')
return rv
def final_clean_up(user, do_b64 = False):
user = user.strip().lower()
if user == 'kill':
flist = glob(dataDir + '*')
elif user == 'all':
flist = glob(dataDir + '*_speech*.wav')
if do_b64:
flist.extend(glob(dataDir + '*.b64'))
else:
flist = glob(dataDir + f'{user}_speech*.wav')
if do_b64:
flist.append(dataDir + user + '_image.b64')
for fpath in flist:
try:
os.remove(fpath)
except:
continue
def delete_image(user):
fpath = dataDir + user + '.png'
if os.path.exists(fpath):
os.remove(fpath)
def list_permanent_files():
flist = os.listdir(dataDir)
others = []
log_cnt = 0
wav_cnt = 0
other_cnt = 0
list_logs = []
for fpath in flist:
if fpath.endswith('.txt'):
log_cnt += 1
list_logs.append(fpath)
elif fpath.endswith('.wav'):
wav_cnt += 1
else:
others.append(fpath)
other_cnt = len(others)
if log_cnt > 5:
list_logs = []
return (str(log_cnt), str(wav_cnt), str(other_cnt), str(others), list_logs)
def make_image(prompt, user, pwd):
user = user.lower().strip()
msg = 'Error: unable to create image.'
fpath = None
model = 'dall-e-2'
size = '512x512'
quality = 'standard'
if user in unames and pwd == pwdList[unames.index(user)]:
if len(prompt.strip()) == 0:
return [gr.Image(value=None, visible=False), 'You must provide a prompt describing image you desire']
if prompt.startswith('hd '):
prompt = prompt[3:]
model = 'dall-e-3'
size = '1024x1024'
quality = 'hd'
try:
response = Client().images.generate(model=model, prompt=prompt,size=size,
quality=quality, response_format='b64_json')
except Exception as ex:
msg = ex.message
return [gr.Image(visible=False, value=None), msg]
if len(response.data) == 0:
msg = "OpenAI returned no image data"
return [gr.Image(visible=False, value=None), msg]
try:
image_data = response.data[0].b64_json
with Image.open(BytesIO(base64.b64decode(image_data))) as image:
fpath = dataDir + user + '.png'
image.save(fpath)
with open(image_count_path(user), 'at') as fp:
if quality == 'hd':
fp.write('hd\n')
else:
fp.write('1\n')
msg = 'Image created!'
except:
return [gr.Image(visible=False, value=None), msg]
else:
msg = 'Incorrect user name or password'
return [gr.Image(visible=False, value=None), msg]
return [gr.Image(visible=True, value=fpath), msg]
def show_help():
txt = '''
1. Gemeral:
1.1 Login with user name and password (not case-sensitive)
1.2 Type prompts (questions, instructions) into "Prompt or Question" window (OR) you can speak prompts by
tapping the audio "Record" button, saying your prompt, then tapping the "Stop" button.
Your prompt will appear in the Prompt window, and you can edit it there if needed.
1.3 Text in the "Dialog" window can be spoken by tapping the "Speak Dialog" button.
2. Chat:
2.1 Enter prompt and tap the "Submit Prompt/Question" button. The responses appear in the Dialog window.
2.2 Enter follow-up questions in the Prompt window either by typing or speaking. Tap the voice
entry "Reset Voice Entry" button to enable additional voice entry. Then tap "Submit Prompt/Question".
2.3 If topic changes or when done chatting, tap the "Restart Conversation" button.
3. Solve math equations or logic problems providing step-by-step analysis:
3.1 Math: Make "solve" the first word in your prompt, followed by the equation, e.g., x^2 - x + 1 = 0
3.2 Logic: Make "puzzle" the first word in your prompt, followed by a detailed description of a logic
problem with the answer(s) you desire.
4. Make Image:
4.1 Enter description of desired image in prompt window via either typing or voice entry
4.2 Tap the "Make Image" button. This can take a few seconds.
4.3 There is a download button on the image display if your system supports file downloads.
4.4 When done viewing image, tap the "Restart Conversation" button
5. Analyze an Image you provide:
5.1 Enter what you want to know about the image in the prompt window. You can include instructions
to write a poem about something in the image, for example. Or just say "what's in this image?"
5.2 Tap the "Upload Image to Analyze" button.
5.3 An empty image box will appear lower left. Drag or upload image into it. It offers web cam or camera
input also.
5.4 The image should appear. This can take some time with a slow internet connection and large image.
5.5 Tap the "Submit Prompt/Question" button to start the analysis. This initiates a chat dialog and
you can ask follow-up questions. However, the image is not re-analyzed for follow-up dialog.
Hints:
1. Better chat and image results are obtained by including detailed descriptions and instructions
in the prompt.
2. Always tap "Restart Conversation" before requesting an image or changing chat topics.
3. Audio input and output functions depend on the hardware capability of your device.
4. "Speak Dialog" will voice whatever is currently in the Dialog window. You can repeat it and you
can edit what's to be spoken. Except: In a chat conversation, spoken dialog will only include
the latest prompt/response ("YOU:/GPT:") sequence.'''
return md(txt)
def upload_image(prompt, user, password):
if not (user in unames and password == pwdList[unames.index(user)]):
return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"]
if len(prompt) < 3:
return [gr.Image(visible=False, interactive=True), "You must provide prompt/instructions (what to do with the image)"]
return [gr.Image(visible=True, interactive=True), '']
def load_image(image, user):
status = 'OK, image is ready! Tap "Submit Prompt/Question" to start analyzing'
try:
with open(image, 'rb') as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
fpath = dataDir + user + '_image.b64'
with open(fpath, 'wt') as fp:
fp.write(base64_image)
except:
status = 'Unable to upload image'
return [fpath, status]
def analyze_image(user, model, prompt):
status = 'ok'
try:
with open(dataDir + user + '_image.b64', 'rt') as fp:
base64_image = fp.read()
except:
status = "base64 image file not found"
return [None, status]
completion = Client().chat.completions.create(
model=model,
messages=[
{ "role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high"
}
}
]
}
],
max_tokens= 500
)
# response = completion.choices[0].message.content
return [completion, status]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
history = gr.State([])
password = gr.State("")
user = gr.State("unknown")
model = gr.State("gpt-4o-mini")
q = gr.State([])
qsave = gr.State([])
uploaded_image_file = gr.State('')
def clean_up(user):
flist = glob(dataDir + f'{user}_speech*.wav')
for fpath in flist:
try:
os.remove(fpath)
except:
continue
def initial_audio_output(txt, user):
global digits
global abbrevs
if not user in unames:
return [gr.Audio(sources=None), []]
clean_up(user)
q = []
if len(txt.strip()) < 5:
return ['None', q]
try:
loc = txt.rindex('YOU:')
txt = txt[loc:]
except:
pass
for s,x in abbrevs.items():
txt = txt.replace(s, x)
words_in = txt.replace('**', '').replace(' ','').split('<br>')
words_out = []
for s in words_in:
s = s.lstrip('- *@#$%^&_=+-')
if len(s) > 0:
loc = s.find(' ')
if loc > 1:
val = s[0:loc]
isnum = val.replace('.','0').isdecimal()
if isnum:
if val.endswith('.'):
val = val[:-1].replace('.',' point ') + '., '
else:
val = val.replace('.', ' point ') + ', '
s = 'num'+ val + s[loc:]
words_out.append(s)
chunklist = []
for chunk in words_out:
if chunk.strip() == '':
continue
isnumbered = chunk.startswith('num')
number = ''
loc = 0
if isnumbered:
chunk = chunk[3:]
loc = chunk.index(',')
number = chunk[0:loc]
chunk = chunk[loc:]
locs = []
for i in range(1,len(chunk)-1):
(a, b, c) = chunk[i-1:i+2]
if a.isdecimal() and b == '.' and c.isdecimal():
locs.append(i)
for i in locs:
chunk = chunk[:i] + ' point ' + chunk[i+1:]
if len(chunk) > 50:
finechunks = chunk.split('.')
for fchunk in finechunks:
if isnumbered:
fchunk = number + fchunk
isnumbered = False
if len(fchunk) > 0:
if fchunk != '"':
chunklist.append(fchunk)
else:
line = number + chunk
if line != '"':
chunklist.append(line)
total_speech = 0
for chunk in chunklist:
total_speech += len(chunk)
with open(dataDir + user + '_speech.txt','a') as f:
f.write(f'speech:{str(total_speech)}\n')
chunk = chunklist[0]
if chunk.strip() == '':
return gr.Audio(sources=None)
fname_list = gen_speech_file_names(user, len(chunklist))
q = fname_list.copy()
qsave = fname_list.copy()
fname = q.pop(0)
if len(chunklist) > 0:
threading.Thread(target=speech_worker, daemon=True, args=(chunklist[1:],fname_list[1:])).start()
response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav')
with open(fname, 'wb') as fp:
fp.write(response.content)
return [fname, q]
def gen_output_audio(q, user):
try:
fname = q.pop(0)
except:
final_clean_up(user)
return [None, gr.Audio(sources=None)]
if not os.path.exists(fname):
sleep(3)
if not os.path.exists(fname):
response = Client().audio.speech.create(model="tts-1", voice="fable",
input='Sorry, text-to-speech is responding too slow right now', speed=0.85, response_format='wav')
with open(fname, 'wb') as fp:
fp.write(response.content)
q = []
return [fname, q]
gr.Markdown('# GPT Chat')
gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.')
with gr.Row():
user_window = gr.Textbox(label = "User Name")
user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window])
pwd_window = gr.Textbox(label = "Password")
pwd_window.blur(updatePassword, inputs = pwd_window, outputs = [password, pwd_window])
help_button = gr.Button(value='Help & Hints')
with gr.Row():
audio_widget = gr.Audio(type='filepath', format='wav',waveform_options=gr.WaveformOptions(
show_recording_waveform=True), sources=['microphone'], scale = 3, label="Prompt/Question Voice Entry", max_length=120)
reset_button = gr.ClearButton(value="Reset Voice Entry", scale=1) #new_func1()
with gr.Row():
clear_button = gr.Button(value="Restart Conversation")
# gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")],
# value="gpt-3.5-turbo", label="GPT Model", interactive=True)
button_do_image = gr.Button(value='Make Image')
button_get_image = gr.Button(value='Upload Image to Analyze')
speak_output = gr.Button(value="Speak Dialog", visible=True)
submit_button = gr.Button(value="Submit Prompt/Question")
prompt_window = gr.Textbox(label = "Prompt or Question")
gr.Markdown('### **Dialog:**')
output_window = gr.Markdown(container=True)
with gr.Row():
with gr.Column():
image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze', type='filepath')
with gr.Column():
image_window = gr.Image(visible=False, label='Generated Image')
with gr.Row():
# plot = gr.Plot(visible=False)
plot = gr.LinePlot(test_plot_df(), x="month", y="value", visible=False, label="Portfolio Value History")
submit_button.click(chat,
inputs=[prompt_window, user_window, password, history, output_window, model, uploaded_image_file],
outputs=[history, output_window, prompt_window, model, uploaded_image_file, plot])
clear_button.click(fn=new_conversation, inputs=user_window,
outputs=[prompt_window, history, output_window, image_window, image_window2, uploaded_image_file, plot])
audio_widget.stop_recording(fn=transcribe, inputs=[user_window, password, audio_widget],
outputs=[prompt_window])
audio_widget.pause_recording(fn=pause_message, outputs=[prompt_window])
reset_button.add(audio_widget)
audio_out = gr.Audio(autoplay=True, visible=False)
audio_out.stop(fn=gen_output_audio, inputs=[q, user_window], outputs = [audio_out, q])
speak_output.click(fn=initial_audio_output, inputs=[output_window, user_window], outputs=[audio_out, q])
# output_window.change(fn=set_speak_button, inputs=output_window,outputs=speak_output)
button_do_image.click(fn=make_image, inputs=[prompt_window,user_window, password],outputs=[image_window, output_window])
image_window.change(fn=delete_image, inputs=[user])
help_button.click(fn=show_help, outputs=output_window)
button_get_image.click(fn=upload_image,inputs = [prompt_window, user, password], outputs = [image_window2, output_window])
image_window2.upload(fn=load_image, inputs=[image_window2, user], outputs=[uploaded_image_file, output_window])
# demo.unload(final_clean_up(user))
demo.launch(share=True, allowed_paths=[dataDir], ssr_mode=False)
|