Spaces:
Running
Running
Update app.py
Browse filesadded stock news
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import openai
|
| 4 |
-
from numpy._core.defchararray import endswith, isdecimal
|
| 5 |
from openai import OpenAI
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from pathlib import Path
|
|
@@ -75,6 +75,32 @@ def etz_now():
|
|
| 75 |
ltime = datetime.now(eastern)
|
| 76 |
return ltime
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def stock_history_df(num_weeks):
|
| 79 |
values = []
|
| 80 |
dates = []
|
|
@@ -386,6 +412,10 @@ def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_ima
|
|
| 386 |
y_lim=[500000, 700000], label="Portfolio Value History")]
|
| 387 |
else:
|
| 388 |
return [past, response, None, gptModel, uploaded_image_file, plot]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
if prompt.startswith('stockload'):
|
| 390 |
create_stock_data_file(prompt[9:].lstrip())
|
| 391 |
return [past, 'Stock data file created', None, gptModel, uploaded_image_file, plot]
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import openai
|
| 4 |
+
from numpy._core.defchararray import endswith, isdecimal, startswith
|
| 5 |
from openai import OpenAI
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from pathlib import Path
|
|
|
|
| 75 |
ltime = datetime.now(eastern)
|
| 76 |
return ltime
|
| 77 |
|
| 78 |
+
def date_from_utime(utime):
|
| 79 |
+
ts = int(utime)
|
| 80 |
+
dt = datetime.utcfromtimestamp(ts)
|
| 81 |
+
eastern = pytz.timezone('US/Eastern')
|
| 82 |
+
return dt.astimezone(eastern).strftime('%Y-%m-%d')
|
| 83 |
+
|
| 84 |
+
def get_stock_news(search_symbol):
|
| 85 |
+
name_dict = {}
|
| 86 |
+
with open(stock_data_path, 'rt') as fp:
|
| 87 |
+
lines = fp.readlines()
|
| 88 |
+
for line in lines:
|
| 89 |
+
(name, symbol, shares) = line.rstrip().split(',')
|
| 90 |
+
name = name.strip()
|
| 91 |
+
symbol = symbol.strip()
|
| 92 |
+
name_dict[symbol] = name
|
| 93 |
+
try:
|
| 94 |
+
news = yf.Search(name_dict[search_symbol.upper()], news_count=5).news
|
| 95 |
+
except:
|
| 96 |
+
return f'No results for symbol {search_symbol}, check spelling'
|
| 97 |
+
rv = ''
|
| 98 |
+
for item in news:
|
| 99 |
+
rv += f'Title: {item["title"]}\n'
|
| 100 |
+
rv += f'Publisher: {item["publisher"]}\n'
|
| 101 |
+
rv += f'Date published: {date_from_utime(item["providerPublishTime"])}\n\n'
|
| 102 |
+
return rv
|
| 103 |
+
|
| 104 |
def stock_history_df(num_weeks):
|
| 105 |
values = []
|
| 106 |
dates = []
|
|
|
|
| 412 |
y_lim=[500000, 700000], label="Portfolio Value History")]
|
| 413 |
else:
|
| 414 |
return [past, response, None, gptModel, uploaded_image_file, plot]
|
| 415 |
+
if prompt.startswith('stock news'):
|
| 416 |
+
symbol = prompt[11:]
|
| 417 |
+
response = get_stock_news(symbol)
|
| 418 |
+
return [past, response, None, gptModel, uploaded_image_file, plot]
|
| 419 |
if prompt.startswith('stockload'):
|
| 420 |
create_stock_data_file(prompt[9:].lstrip())
|
| 421 |
return [past, 'Stock data file created', None, gptModel, uploaded_image_file, plot]
|