dkatz2391's picture
Version: 1.1.2 - Removed torch_dtype from from_pretrained call # Applied: # - Removed unsupported inputs/outputs kwargs on demo.load/unload # - Converted NumPy arrays to lists in pack_state for JSON safety # - Fixed indentation in Blocks event-handlers # - Verified clear() callbacks use only callback + outputs # - Removed `torch_dtype` arg from TrellisTextTo3DPipeline.from_pretrained # - Bumped version, added comments at change sites
e819550 verified
raw
history blame
10.3 kB
# Version: 1.1.2 - Removed torch_dtype from from_pretrained call
# Applied:
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
# - Converted NumPy arrays to lists in pack_state for JSON safety
# - Fixed indentation in Blocks event-handlers
# - Verified clear() callbacks use only callback + outputs
# - Removed `torch_dtype` arg from TrellisTextTo3DPipeline.from_pretrained
# - Bumped version, added comments at change sites
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, created directory: {user_dir}")
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory already removed: {user_dir}")
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
packed_data = {
'gaussian': {
**{k: v for k, v in gs.init_params.items()},
# FIX: convert arrays to lists for JSON
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
'_rotation': gs._rotation.detach().cpu().numpy().tolist(),
'_opacity': gs._opacity.detach().cpu().numpy().tolist(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy().tolist(),
'faces': mesh.faces.detach().cpu().numpy().tolist(),
},
}
return packed_data
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
print("[unpack_state] Unpacking state from dictionary... ")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
gs = Gaussian(
aabb=gauss_data.get('aabb'),
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
gs._xyz = torch.tensor(np.array(gauss_data['_xyz']), device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(np.array(gauss_data['_features_dc']), device=device, dtype=torch.float32)
gs._scaling = torch.tensor(np.array(gauss_data['_scaling']), device=device, dtype=torch.float32)
gs._rotation = torch.tensor(np.array(gauss_data['_rotation']), device=device, dtype=torch.float32)
gs._opacity = torch.tensor(np.array(gauss_data['_opacity']), device=device, dtype=torch.float32)
mesh = edict(
vertices=torch.tensor(np.array(mesh_data['vertices']), device=device, dtype=torch.float32),
faces=torch.tensor(np.array(mesh_data['faces']), device=device, dtype=torch.int64),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
return int(new_seed)
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={"steps": int(ss_sampling_steps), "cfg_strength": float(ss_guidance_strength)},
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)},
)
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video_combined = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video_combined, fps=15, quality=8)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return state_dict, video_path
@spaces.GPU(duration=120)
def extract_glb(
state_dict: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
gs, mesh = unpack_state(state_dict)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(
state_dict: dict,
req: gr.Request
) -> Tuple[str, str]:
gs, _ = unpack_state(state_dict)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
""")
# State buffer
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("---\n**Stage 1**")
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("---\n**Stage 2**")
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True):
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="3D Preview", autoplay=True, loop=True)
model_output = gr.Model3D(label="Extracted Model Preview")
# --- Event handlers ---
demo.load(start_session) # FIX: remove inputs/outputs kwargs
demo.unload(end_session) # FIX: remove inputs/outputs kwargs
# Align indentation to one level under Blocks
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: download_glb.update(interactive=True),
outputs=[download_glb],
)
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: download_gaussian.update(interactive=True),
outputs=[download_gs],
)
# Clear callbacks
model_output.clear(
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)),
outputs=[download_glb, download_gs],
)
video_output.clear(
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)),
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
if __name__ == "__main__":
# Removed torch_dtype argument to match current API
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge"
)
if torch.cuda.is_available(): pipeline = pipeline.to("cuda")
demo.queue().launch(debug=True)