Spaces:
Sleeping
Sleeping
Version: 1.1.2 - Removed torch_dtype from from_pretrained call # Applied: # - Removed unsupported inputs/outputs kwargs on demo.load/unload # - Converted NumPy arrays to lists in pack_state for JSON safety # - Fixed indentation in Blocks event-handlers # - Verified clear() callbacks use only callback + outputs # - Removed `torch_dtype` arg from TrellisTextTo3DPipeline.from_pretrained # - Bumped version, added comments at change sites
e819550
verified
# Version: 1.1.2 - Removed torch_dtype from from_pretrained call | |
# Applied: | |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload | |
# - Converted NumPy arrays to lists in pack_state for JSON safety | |
# - Fixed indentation in Blocks event-handlers | |
# - Verified clear() callbacks use only callback + outputs | |
# - Removed `torch_dtype` arg from TrellisTextTo3DPipeline.from_pretrained | |
# - Bumped version, added comments at change sites | |
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisTextTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import traceback | |
import sys | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"Started session, created directory: {user_dir}") | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
print(f"Ended session, removed directory: {user_dir}") | |
except OSError as e: | |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr) | |
else: | |
print(f"Ended session, directory already removed: {user_dir}") | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary.""" | |
packed_data = { | |
'gaussian': { | |
**{k: v for k, v in gs.init_params.items()}, | |
# FIX: convert arrays to lists for JSON | |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(), | |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(), | |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(), | |
'_rotation': gs._rotation.detach().cpu().numpy().tolist(), | |
'_opacity': gs._opacity.detach().cpu().numpy().tolist(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.detach().cpu().numpy().tolist(), | |
'faces': mesh.faces.detach().cpu().numpy().tolist(), | |
}, | |
} | |
return packed_data | |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]: | |
print("[unpack_state] Unpacking state from dictionary... ") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
gauss_data = state_dict['gaussian'] | |
mesh_data = state_dict['mesh'] | |
gs = Gaussian( | |
aabb=gauss_data.get('aabb'), | |
sh_degree=gauss_data.get('sh_degree'), | |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'), | |
scaling_bias=gauss_data.get('scaling_bias'), | |
opacity_bias=gauss_data.get('opacity_bias'), | |
scaling_activation=gauss_data.get('scaling_activation'), | |
) | |
gs._xyz = torch.tensor(np.array(gauss_data['_xyz']), device=device, dtype=torch.float32) | |
gs._features_dc = torch.tensor(np.array(gauss_data['_features_dc']), device=device, dtype=torch.float32) | |
gs._scaling = torch.tensor(np.array(gauss_data['_scaling']), device=device, dtype=torch.float32) | |
gs._rotation = torch.tensor(np.array(gauss_data['_rotation']), device=device, dtype=torch.float32) | |
gs._opacity = torch.tensor(np.array(gauss_data['_opacity']), device=device, dtype=torch.float32) | |
mesh = edict( | |
vertices=torch.tensor(np.array(mesh_data['vertices']), device=device, dtype=torch.float32), | |
faces=torch.tensor(np.array(mesh_data['faces']), device=device, dtype=torch.int64), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
return int(new_seed) | |
def text_to_3d( | |
prompt: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
outputs = pipeline.run( | |
prompt, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
sparse_structure_sampler_params={"steps": int(ss_sampling_steps), "cfg_strength": float(ss_guidance_strength)}, | |
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)}, | |
) | |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video_combined = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)] | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video_combined, fps=15, quality=8) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return state_dict, video_path | |
def extract_glb( | |
state_dict: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
gs, mesh = unpack_state(state_dict) | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian( | |
state_dict: dict, | |
req: gr.Request | |
) -> Tuple[str, str]: | |
gs, _ = unpack_state(state_dict) | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
# --- Gradio UI Definition --- | |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo: | |
gr.Markdown(""" | |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
""") | |
# State buffer | |
output_buf = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
text_prompt = gr.Textbox(label="Text Prompt", lines=5) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("---\n**Stage 1**") | |
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1) | |
gr.Markdown("---\n**Stage 2**") | |
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1) | |
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1) | |
generate_btn = gr.Button("Generate 3D Preview", variant="primary") | |
with gr.Accordion(label="GLB Extraction Settings", open=True): | |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False) | |
with gr.Column(scale=1): | |
video_output = gr.Video(label="3D Preview", autoplay=True, loop=True) | |
model_output = gr.Model3D(label="Extracted Model Preview") | |
# --- Event handlers --- | |
demo.load(start_session) # FIX: remove inputs/outputs kwargs | |
demo.unload(end_session) # FIX: remove inputs/outputs kwargs | |
# Align indentation to one level under Blocks | |
generate_event = generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
text_to_3d, | |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_event = extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: download_glb.update(interactive=True), | |
outputs=[download_glb], | |
) | |
extract_gs_event = extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: download_gaussian.update(interactive=True), | |
outputs=[download_gs], | |
) | |
# Clear callbacks | |
model_output.clear( | |
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)), | |
outputs=[download_glb, download_gs], | |
) | |
video_output.clear( | |
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)), | |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], | |
) | |
if __name__ == "__main__": | |
# Removed torch_dtype argument to match current API | |
pipeline = TrellisTextTo3DPipeline.from_pretrained( | |
"JeffreyXiang/TRELLIS-text-xlarge" | |
) | |
if torch.cuda.is_available(): pipeline = pipeline.to("cuda") | |
demo.queue().launch(debug=True) | |