Spaces:
Sleeping
Sleeping
File size: 10,318 Bytes
e819550 2f98862 e819550 2f98862 1809fe4 696b9f6 1809fe4 2f98862 1809fe4 696b9f6 b078538 1809fe4 b078538 1809fe4 b078538 2f98862 b078538 1809fe4 2f98862 b078538 2f98862 b078538 2f98862 b078538 1809fe4 2f98862 b078538 2f98862 b078538 2f98862 b078538 2f98862 b078538 1809fe4 2f98862 988efc8 2f98862 b078538 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 b078538 2f98862 1809fe4 2f98862 1809fe4 2f98862 b078538 2f98862 1809fe4 63ce34f 3447081 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 e819550 1809fe4 2f98862 1809fe4 2f98862 1809fe4 2f98862 1809fe4 e819550 2f98862 e819550 b078538 2f98862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Version: 1.1.2 - Removed torch_dtype from from_pretrained call
# Applied:
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
# - Converted NumPy arrays to lists in pack_state for JSON safety
# - Fixed indentation in Blocks event-handlers
# - Verified clear() callbacks use only callback + outputs
# - Removed `torch_dtype` arg from TrellisTextTo3DPipeline.from_pretrained
# - Bumped version, added comments at change sites
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, created directory: {user_dir}")
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory already removed: {user_dir}")
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
packed_data = {
'gaussian': {
**{k: v for k, v in gs.init_params.items()},
# FIX: convert arrays to lists for JSON
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
'_rotation': gs._rotation.detach().cpu().numpy().tolist(),
'_opacity': gs._opacity.detach().cpu().numpy().tolist(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy().tolist(),
'faces': mesh.faces.detach().cpu().numpy().tolist(),
},
}
return packed_data
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
print("[unpack_state] Unpacking state from dictionary... ")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
gs = Gaussian(
aabb=gauss_data.get('aabb'),
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
gs._xyz = torch.tensor(np.array(gauss_data['_xyz']), device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(np.array(gauss_data['_features_dc']), device=device, dtype=torch.float32)
gs._scaling = torch.tensor(np.array(gauss_data['_scaling']), device=device, dtype=torch.float32)
gs._rotation = torch.tensor(np.array(gauss_data['_rotation']), device=device, dtype=torch.float32)
gs._opacity = torch.tensor(np.array(gauss_data['_opacity']), device=device, dtype=torch.float32)
mesh = edict(
vertices=torch.tensor(np.array(mesh_data['vertices']), device=device, dtype=torch.float32),
faces=torch.tensor(np.array(mesh_data['faces']), device=device, dtype=torch.int64),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
return int(new_seed)
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={"steps": int(ss_sampling_steps), "cfg_strength": float(ss_guidance_strength)},
slat_sampler_params={"steps": int(slat_sampling_steps), "cfg_strength": float(slat_guidance_strength)},
)
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video_combined = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video_combined, fps=15, quality=8)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return state_dict, video_path
@spaces.GPU(duration=120)
def extract_glb(
state_dict: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
gs, mesh = unpack_state(state_dict)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(
state_dict: dict,
req: gr.Request
) -> Tuple[str, str]:
gs, _ = unpack_state(state_dict)
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
""")
# State buffer
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("---\n**Stage 1**")
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("---\n**Stage 2**")
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True):
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="3D Preview", autoplay=True, loop=True)
model_output = gr.Model3D(label="Extracted Model Preview")
# --- Event handlers ---
demo.load(start_session) # FIX: remove inputs/outputs kwargs
demo.unload(end_session) # FIX: remove inputs/outputs kwargs
# Align indentation to one level under Blocks
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: (extract_glb_btn.update(interactive=True), extract_gs_btn.update(interactive=True)),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: download_glb.update(interactive=True),
outputs=[download_glb],
)
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: download_gaussian.update(interactive=True),
outputs=[download_gs],
)
# Clear callbacks
model_output.clear(
lambda: (download_glb.update(interactive=False), download_gs.update(interactive=False)),
outputs=[download_glb, download_gs],
)
video_output.clear(
lambda: (extract_glb_btn.update(interactive=False), extract_gs_btn.update(interactive=False), download_glb.update(interactive=False), download_gs.update(interactive=False)),
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
if __name__ == "__main__":
# Removed torch_dtype argument to match current API
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge"
)
if torch.cuda.is_available(): pipeline = pipeline.to("cuda")
demo.queue().launch(debug=True)
|