Spaces:
Running
on
Zero
Running
on
Zero
revert back to 1.1
Browse files
app.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
-
# Version: 1.1.0 - API State Fix
|
2 |
# Changes:
|
3 |
-
# -
|
4 |
-
#
|
5 |
-
#
|
6 |
-
#
|
|
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
-
# NOTE: Ensuring 'spaces' is imported if decorators are used (was missing in user provided snippet but needed)
|
10 |
-
# If @spaces.GPU decorators are not used, this import is not needed.
|
11 |
-
# Assuming they ARE used based on previous context:
|
12 |
import spaces
|
13 |
|
14 |
import os
|
15 |
import shutil
|
16 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
17 |
-
|
|
|
|
|
18 |
|
19 |
from typing import *
|
20 |
import torch
|
@@ -28,128 +30,102 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
28 |
import traceback
|
29 |
import sys
|
30 |
|
|
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
32 |
-
# Using path relative to file as in original user provided code
|
33 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
34 |
-
|
35 |
-
|
36 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
37 |
-
print(f"Using temporary directory: {TMP_DIR}")
|
38 |
-
except OSError as e:
|
39 |
-
print(f"Warning: Could not create base temp directory {TMP_DIR}: {e}", file=sys.stderr)
|
40 |
-
TMP_DIR = '.' # Fallback
|
41 |
-
print(f"Warning: Falling back to use current directory for temp files: {os.path.abspath(TMP_DIR)}")
|
42 |
|
43 |
def start_session(req: gr.Request):
|
44 |
"""Creates a temporary directory for the user session."""
|
45 |
-
user_dir =
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
50 |
-
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
|
51 |
-
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
52 |
-
os.makedirs(user_dir, exist_ok=True)
|
53 |
-
print(f"Started session, ensured directory exists: {user_dir}")
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Error in start_session creating directory '{user_dir}': {e}", file=sys.stderr)
|
56 |
|
57 |
def end_session(req: gr.Request):
|
58 |
"""Removes the temporary directory for the user session."""
|
59 |
-
user_dir =
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
shutil.rmtree(user_dir)
|
69 |
-
print(f"Ended session, removed directory: {user_dir}")
|
70 |
-
except OSError as e:
|
71 |
-
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
72 |
-
else:
|
73 |
-
print(f"Ended session, directory not found or not a directory: {user_dir}")
|
74 |
-
except Exception as e:
|
75 |
-
print(f"Error in end_session cleaning directory '{user_dir}': {e}", file=sys.stderr)
|
76 |
|
77 |
|
78 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
79 |
"""Packs Gaussian and Mesh data into a serializable dictionary."""
|
|
|
80 |
print("[pack_state] Packing state to dictionary...")
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
print(f"Error during pack_state: {e}", file=sys.stderr)
|
100 |
-
traceback.print_exc()
|
101 |
-
raise
|
102 |
|
103 |
|
104 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
105 |
"""Unpacks Gaussian and Mesh data from a dictionary."""
|
106 |
print("[unpack_state] Unpacking state from dictionary...")
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
print(f"Error during unpack_state: {e}", file=sys.stderr)
|
141 |
-
traceback.print_exc()
|
142 |
-
raise
|
143 |
|
144 |
|
145 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
146 |
"""Gets a seed value, randomizing if requested."""
|
147 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
148 |
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
|
149 |
-
return int(new_seed)
|
150 |
|
151 |
|
152 |
-
# Decorator requires 'import spaces' at the top
|
153 |
@spaces.GPU
|
154 |
def text_to_3d(
|
155 |
prompt: str,
|
@@ -159,84 +135,79 @@ def text_to_3d(
|
|
159 |
slat_guidance_strength: float,
|
160 |
slat_sampling_steps: int,
|
161 |
req: gr.Request,
|
162 |
-
) -> Tuple[dict,
|
163 |
"""
|
164 |
Generates a 3D model (Gaussian and Mesh) from text and returns a
|
165 |
-
serializable state dictionary and
|
166 |
-
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
|
167 |
"""
|
168 |
-
print(f"[text_to_3d
|
169 |
-
user_dir =
|
170 |
-
|
|
|
|
|
|
|
171 |
try:
|
172 |
-
|
173 |
-
if not session_hash:
|
174 |
-
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
175 |
-
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
|
176 |
-
user_dir = os.path.join(TMP_DIR, str(session_hash))
|
177 |
-
os.makedirs(user_dir, exist_ok=True)
|
178 |
-
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
|
179 |
-
|
180 |
-
# --- Generation Pipeline ---
|
181 |
-
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
|
182 |
outputs = pipeline.run(
|
183 |
-
prompt
|
184 |
seed=seed,
|
185 |
-
formats=["gaussian", "mesh"],
|
186 |
sparse_structure_sampler_params={
|
187 |
-
"steps": int(ss_sampling_steps),
|
188 |
"cfg_strength": float(ss_guidance_strength),
|
189 |
},
|
190 |
slat_sampler_params={
|
191 |
-
"steps": int(slat_sampling_steps),
|
192 |
"cfg_strength": float(slat_guidance_strength),
|
193 |
},
|
194 |
)
|
195 |
-
print("[text_to_3d
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
198 |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
|
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
except Exception as e:
|
201 |
-
print(f"❌ [text_to_3d
|
202 |
traceback.print_exc()
|
203 |
-
|
204 |
-
|
205 |
-
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
|
206 |
-
video_path = None # Explicitly set path to None for this debug version
|
207 |
-
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
|
208 |
-
# --- Start Original Video Code Block (Commented Out) ---
|
209 |
-
# try:
|
210 |
-
# print("[text_to_3d] Rendering video preview...")
|
211 |
-
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
212 |
-
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
213 |
-
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
214 |
-
# video_path_tmp = os.path.join(user_dir, 'sample.mp4')
|
215 |
-
# imageio.mimsave(video_path_tmp, video, fps=15, quality=8)
|
216 |
-
# print(f"[text_to_3d] Video saved to: {video_path_tmp}")
|
217 |
-
# video_path = video_path_tmp
|
218 |
-
# except Exception as e:
|
219 |
-
# print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
|
220 |
-
# traceback.print_exc()
|
221 |
-
# video_path = None # Indicate video failure
|
222 |
-
# --- End Original Video Code Block ---
|
223 |
|
224 |
# --- Cleanup and Return ---
|
|
|
225 |
if torch.cuda.is_available():
|
226 |
torch.cuda.empty_cache()
|
227 |
-
print("[text_to_3d
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
print("Error: state_dict is None before return, generation likely failed.", file=sys.stderr)
|
232 |
-
raise gr.Error("State dictionary creation failed.")
|
233 |
return state_dict, video_path
|
234 |
|
235 |
|
236 |
-
#
|
237 |
-
@spaces.GPU(duration=120)
|
238 |
def extract_glb(
|
239 |
-
state_dict: dict,
|
240 |
mesh_simplify: float,
|
241 |
texture_size: int,
|
242 |
req: gr.Request,
|
@@ -245,37 +216,32 @@ def extract_glb(
|
|
245 |
Extracts a GLB file from the provided 3D model state dictionary.
|
246 |
"""
|
247 |
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
session_hash = req.session_hash
|
252 |
-
if not session_hash:
|
253 |
-
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
254 |
-
print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
print(f"[extract_glb] User directory: {user_dir}")
|
263 |
-
|
264 |
-
# --- Unpack state from the dictionary ---
|
265 |
gs, mesh = unpack_state(state_dict)
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
|
|
268 |
print("[extract_glb] Converting to GLB...")
|
269 |
-
|
270 |
-
tex_size = int(texture_size)
|
271 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
|
272 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
273 |
print(f"[extract_glb] Exporting GLB to: {glb_path}")
|
274 |
glb.export(glb_path)
|
275 |
print("[extract_glb] GLB exported successfully.")
|
276 |
-
|
277 |
except Exception as e:
|
278 |
-
print(f"❌ [extract_glb]
|
279 |
traceback.print_exc()
|
280 |
raise gr.Error(f"Failed to extract GLB: {e}")
|
281 |
|
@@ -284,50 +250,44 @@ def extract_glb(
|
|
284 |
torch.cuda.empty_cache()
|
285 |
print("[extract_glb] Cleared CUDA cache.")
|
286 |
|
|
|
287 |
print("[extract_glb] Returning GLB path.")
|
288 |
-
if glb_path is None:
|
289 |
-
print("Error: glb_path is None before return, extraction likely failed.", file=sys.stderr)
|
290 |
-
raise gr.Error("GLB path generation failed.")
|
291 |
return glb_path, glb_path
|
292 |
|
293 |
|
294 |
-
# Decorator requires 'import spaces' at the top
|
295 |
@spaces.GPU
|
296 |
def extract_gaussian(
|
297 |
-
state_dict: dict,
|
298 |
req: gr.Request
|
299 |
) -> Tuple[str, str]:
|
300 |
"""
|
301 |
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
|
302 |
"""
|
303 |
print("[extract_gaussian] Received request.")
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
session_hash = req.session_hash
|
308 |
-
if not session_hash:
|
309 |
-
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
|
310 |
-
print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")
|
311 |
-
|
312 |
-
if not isinstance(state_dict, dict):
|
313 |
-
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
|
314 |
-
raise gr.Error("Invalid state data received. Please generate the model first.")
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
|
|
|
324 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
325 |
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
|
326 |
gs.save_ply(gaussian_path)
|
327 |
print("[extract_gaussian] PLY saved successfully.")
|
328 |
-
|
329 |
except Exception as e:
|
330 |
-
print(f"❌ [extract_gaussian]
|
331 |
traceback.print_exc()
|
332 |
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
|
333 |
|
@@ -336,10 +296,8 @@ def extract_gaussian(
|
|
336 |
torch.cuda.empty_cache()
|
337 |
print("[extract_gaussian] Cleared CUDA cache.")
|
338 |
|
|
|
339 |
print("[extract_gaussian] Returning PLY path.")
|
340 |
-
if gaussian_path is None:
|
341 |
-
print("Error: gaussian_path is None before return, extraction likely failed.", file=sys.stderr)
|
342 |
-
raise gr.Error("Gaussian PLY path generation failed.")
|
343 |
return gaussian_path, gaussian_path
|
344 |
|
345 |
|
@@ -351,14 +309,17 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
351 |
* Type a text prompt and click "Generate" to create a 3D asset preview.
|
352 |
* Adjust extraction settings if desired.
|
353 |
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
|
354 |
-
*(Note: Video preview is temporarily disabled for debugging)*
|
355 |
""")
|
356 |
|
|
|
|
|
|
|
357 |
output_buf = gr.State()
|
358 |
|
359 |
with gr.Row():
|
360 |
-
with gr.Column(scale=1):
|
361 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
|
|
|
362 |
with gr.Accordion(label="Generation Settings", open=False):
|
363 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
364 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
@@ -370,83 +331,99 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
370 |
with gr.Row():
|
371 |
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
|
372 |
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
|
|
|
373 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
374 |
-
|
|
|
|
|
375 |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
|
376 |
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
|
|
|
377 |
with gr.Row():
|
378 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
379 |
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
|
380 |
gr.Markdown("""
|
381 |
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
|
382 |
""")
|
383 |
-
|
384 |
-
|
385 |
-
video_output = gr.Video(label="Generated 3D Preview (
|
386 |
-
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])
|
|
|
387 |
with gr.Row():
|
|
|
388 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
389 |
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
|
390 |
|
391 |
# --- Event Handlers ---
|
392 |
print("Defining Gradio event handlers...")
|
393 |
-
# Use demo.load as in original user-provided code
|
394 |
-
demo.load(start_session, inputs=None, outputs=None)
|
395 |
-
# Use demo.unload as in original user-provided code (no extra args)
|
396 |
-
demo.unload(end_session) # Corrected: removed inputs/outputs
|
397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
generate_event = generate_btn.click(
|
399 |
get_seed,
|
400 |
inputs=[randomize_seed, seed],
|
401 |
outputs=[seed],
|
402 |
-
api_name="get_seed"
|
403 |
).then(
|
404 |
text_to_3d,
|
405 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
406 |
-
outputs=[output_buf, video_output], #
|
407 |
api_name="text_to_3d"
|
408 |
).then(
|
409 |
-
lambda: (
|
410 |
-
gr.Button(interactive=True),
|
411 |
-
gr.
|
|
|
|
|
412 |
),
|
413 |
-
|
414 |
-
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
415 |
)
|
416 |
|
|
|
|
|
|
|
|
|
|
|
417 |
extract_glb_event = extract_glb_btn.click(
|
418 |
extract_glb,
|
419 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
420 |
-
outputs=[model_output, download_glb],
|
421 |
api_name="extract_glb"
|
422 |
).then(
|
423 |
-
lambda: gr.DownloadButton(interactive=True),
|
424 |
-
inputs=None,
|
425 |
outputs=[download_glb],
|
426 |
)
|
427 |
|
|
|
|
|
428 |
extract_gs_event = extract_gs_btn.click(
|
429 |
extract_gaussian,
|
430 |
-
inputs=[output_buf],
|
431 |
-
outputs=[model_output, download_gs],
|
432 |
api_name="extract_gaussian"
|
433 |
).then(
|
434 |
-
lambda: gr.DownloadButton(interactive=True),
|
435 |
-
inputs=None,
|
436 |
outputs=[download_gs],
|
437 |
)
|
438 |
|
|
|
|
|
439 |
model_output.clear(
|
440 |
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
|
441 |
-
inputs=None,
|
442 |
outputs=[download_glb, download_gs]
|
443 |
)
|
444 |
-
video_output.clear(
|
445 |
lambda: (
|
446 |
-
gr.Button(interactive=False),
|
447 |
-
gr.
|
|
|
|
|
448 |
),
|
449 |
-
inputs=None,
|
450 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
451 |
)
|
452 |
|
@@ -456,30 +433,33 @@ with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
|
|
456 |
# --- Launch the Gradio app ---
|
457 |
if __name__ == "__main__":
|
458 |
print("Loading Trellis pipeline...")
|
459 |
-
pipeline = None
|
460 |
-
pipeline_loaded = False
|
461 |
try:
|
462 |
-
#
|
463 |
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
464 |
-
"JeffreyXiang/TRELLIS-text-xlarge"
|
|
|
|
|
465 |
)
|
|
|
466 |
if torch.cuda.is_available():
|
467 |
pipeline = pipeline.to("cuda")
|
468 |
print("✅ Trellis pipeline loaded successfully to GPU.")
|
469 |
else:
|
470 |
-
print("⚠️ WARNING: CUDA not available, running on CPU.")
|
471 |
print("✅ Trellis pipeline loaded successfully to CPU.")
|
472 |
-
pipeline_loaded = True
|
473 |
except Exception as e:
|
474 |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
475 |
traceback.print_exc()
|
|
|
476 |
print("❌ Exiting due to pipeline load failure.")
|
477 |
sys.exit(1)
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
|
|
|
|
|
1 |
+
# Version: 1.1.0 - API State Fix (2025-05-04)
|
2 |
# Changes:
|
3 |
+
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
|
4 |
+
# as the first return value. This ensures the dictionary is available via the API.
|
5 |
+
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument
|
6 |
+
# instead of relying on the implicit `gr.State` object type when called via API.
|
7 |
+
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
|
8 |
+
# so the UI continues to function by passing the dictionary through output_buf.
|
9 |
+
# - Added minor safety checks and logging.
|
10 |
|
11 |
import gradio as gr
|
|
|
|
|
|
|
12 |
import spaces
|
13 |
|
14 |
import os
|
15 |
import shutil
|
16 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
17 |
+
# Fix potential SpConv issue if needed, try 'hash' or 'native'
|
18 |
+
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
|
19 |
+
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
|
20 |
|
21 |
from typing import *
|
22 |
import torch
|
|
|
30 |
import traceback
|
31 |
import sys
|
32 |
|
33 |
+
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
35 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
36 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
37 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def start_session(req: gr.Request):
|
40 |
"""Creates a temporary directory for the user session."""
|
41 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
+
os.makedirs(user_dir, exist_ok=True)
|
43 |
+
print(f"Started session, created directory: {user_dir}")
|
44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def end_session(req: gr.Request):
|
47 |
"""Removes the temporary directory for the user session."""
|
48 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
49 |
+
if os.path.exists(user_dir):
|
50 |
+
try:
|
51 |
+
shutil.rmtree(user_dir)
|
52 |
+
print(f"Ended session, removed directory: {user_dir}")
|
53 |
+
except OSError as e:
|
54 |
+
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
55 |
+
else:
|
56 |
+
print(f"Ended session, directory already removed: {user_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
60 |
"""Packs Gaussian and Mesh data into a serializable dictionary."""
|
61 |
+
# Ensure tensors are on CPU and converted to numpy before returning the dict
|
62 |
print("[pack_state] Packing state to dictionary...")
|
63 |
+
packed_data = {
|
64 |
+
'gaussian': {
|
65 |
+
# Spread init_params first to ensure correct types
|
66 |
+
**{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included
|
67 |
+
'_xyz': gs._xyz.detach().cpu().numpy(),
|
68 |
+
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
69 |
+
'_scaling': gs._scaling.detach().cpu().numpy(),
|
70 |
+
'_rotation': gs._rotation.detach().cpu().numpy(),
|
71 |
+
'_opacity': gs._opacity.detach().cpu().numpy(),
|
72 |
+
},
|
73 |
+
'mesh': {
|
74 |
+
'vertices': mesh.vertices.detach().cpu().numpy(),
|
75 |
+
'faces': mesh.faces.detach().cpu().numpy(),
|
76 |
+
},
|
77 |
+
}
|
78 |
+
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
|
79 |
+
return packed_data
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
83 |
"""Unpacks Gaussian and Mesh data from a dictionary."""
|
84 |
print("[unpack_state] Unpacking state from dictionary...")
|
85 |
+
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
|
86 |
+
raise ValueError("Invalid state_dict structure passed to unpack_state.")
|
87 |
+
|
88 |
+
# Ensure the device is correctly set when unpacking
|
89 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
90 |
+
print(f"[unpack_state] Using device: {device}")
|
91 |
+
|
92 |
+
gauss_data = state_dict['gaussian']
|
93 |
+
mesh_data = state_dict['mesh']
|
94 |
+
|
95 |
+
# Recreate Gaussian object using parameters stored during packing
|
96 |
+
gs = Gaussian(
|
97 |
+
aabb=gauss_data.get('aabb'), # Use .get for safety
|
98 |
+
sh_degree=gauss_data.get('sh_degree'),
|
99 |
+
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
|
100 |
+
scaling_bias=gauss_data.get('scaling_bias'),
|
101 |
+
opacity_bias=gauss_data.get('opacity_bias'),
|
102 |
+
scaling_activation=gauss_data.get('scaling_activation'),
|
103 |
+
)
|
104 |
+
# Load tensors, ensuring they are created on the correct device
|
105 |
+
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
|
106 |
+
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
|
107 |
+
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
|
108 |
+
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
|
109 |
+
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
|
110 |
+
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
|
111 |
+
|
112 |
+
# Recreate mesh object using edict for compatibility if needed elsewhere
|
113 |
+
mesh = edict(
|
114 |
+
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
|
115 |
+
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64
|
116 |
+
)
|
117 |
+
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
|
118 |
|
119 |
+
return gs, mesh
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
123 |
"""Gets a seed value, randomizing if requested."""
|
124 |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
125 |
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
|
126 |
+
return int(new_seed) # Ensure it's a standard int
|
127 |
|
128 |
|
|
|
129 |
@spaces.GPU
|
130 |
def text_to_3d(
|
131 |
prompt: str,
|
|
|
135 |
slat_guidance_strength: float,
|
136 |
slat_sampling_steps: int,
|
137 |
req: gr.Request,
|
138 |
+
) -> Tuple[dict, str]: # Return type changed for clarity
|
139 |
"""
|
140 |
Generates a 3D model (Gaussian and Mesh) from text and returns a
|
141 |
+
serializable state dictionary and a video preview path.
|
|
|
142 |
"""
|
143 |
+
print(f"[text_to_3d] Received prompt: '{prompt}', Seed: {seed}")
|
144 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
145 |
+
os.makedirs(user_dir, exist_ok=True)
|
146 |
+
print(f"[text_to_3d] User directory: {user_dir}")
|
147 |
+
|
148 |
+
# --- Generation Pipeline ---
|
149 |
try:
|
150 |
+
print("[text_to_3d] Running Trellis pipeline...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
outputs = pipeline.run(
|
152 |
+
prompt,
|
153 |
seed=seed,
|
154 |
+
formats=["gaussian", "mesh"], # Ensure both are generated
|
155 |
sparse_structure_sampler_params={
|
156 |
+
"steps": int(ss_sampling_steps), # Ensure steps are int
|
157 |
"cfg_strength": float(ss_guidance_strength),
|
158 |
},
|
159 |
slat_sampler_params={
|
160 |
+
"steps": int(slat_sampling_steps), # Ensure steps are int
|
161 |
"cfg_strength": float(slat_guidance_strength),
|
162 |
},
|
163 |
)
|
164 |
+
print("[text_to_3d] Pipeline run completed.")
|
165 |
+
except Exception as e:
|
166 |
+
print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr)
|
167 |
+
traceback.print_exc()
|
168 |
+
# Return an empty dict and maybe an error indicator path or None?
|
169 |
+
# For now, re-raise to signal failure clearly upstream.
|
170 |
+
raise gr.Error(f"Trellis pipeline failed: {e}")
|
171 |
|
172 |
+
# --- Create Serializable State Dictionary --- VITAL CHANGE for API
|
173 |
+
# This dictionary holds the necessary data for later extraction.
|
174 |
+
try:
|
175 |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
176 |
+
except Exception as e:
|
177 |
+
print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr)
|
178 |
+
traceback.print_exc()
|
179 |
+
raise gr.Error(f"Failed to pack state: {e}")
|
180 |
|
181 |
+
# --- Render Video Preview ---
|
182 |
+
try:
|
183 |
+
print("[text_to_3d] Rendering video preview...")
|
184 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
185 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
186 |
+
# Ensure video frames are uint8
|
187 |
+
video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
188 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
189 |
+
imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting
|
190 |
+
print(f"[text_to_3d] Video saved to: {video_path}")
|
191 |
except Exception as e:
|
192 |
+
print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
|
193 |
traceback.print_exc()
|
194 |
+
# Still return state_dict, but maybe signal video error? Return None for path.
|
195 |
+
video_path = None # Indicate video failure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
# --- Cleanup and Return ---
|
198 |
+
# Clear CUDA cache if GPU was used
|
199 |
if torch.cuda.is_available():
|
200 |
torch.cuda.empty_cache()
|
201 |
+
print("[text_to_3d] Cleared CUDA cache.")
|
202 |
|
203 |
+
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
|
204 |
+
print("[text_to_3d] Returning state dictionary and video path.")
|
|
|
|
|
205 |
return state_dict, video_path
|
206 |
|
207 |
|
208 |
+
@spaces.GPU(duration=120) # Increased duration slightly
|
|
|
209 |
def extract_glb(
|
210 |
+
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
|
211 |
mesh_simplify: float,
|
212 |
texture_size: int,
|
213 |
req: gr.Request,
|
|
|
216 |
Extracts a GLB file from the provided 3D model state dictionary.
|
217 |
"""
|
218 |
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
|
219 |
+
if not isinstance(state_dict, dict):
|
220 |
+
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
|
221 |
+
raise gr.Error("Invalid state data received. Please generate the model first.")
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
224 |
+
os.makedirs(user_dir, exist_ok=True)
|
225 |
+
print(f"[extract_glb] User directory: {user_dir}")
|
226 |
|
227 |
+
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
228 |
+
try:
|
|
|
|
|
|
|
229 |
gs, mesh = unpack_state(state_dict)
|
230 |
+
except Exception as e:
|
231 |
+
print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
|
232 |
+
traceback.print_exc()
|
233 |
+
raise gr.Error(f"Failed to unpack state: {e}")
|
234 |
|
235 |
+
# --- Postprocessing and Export ---
|
236 |
+
try:
|
237 |
print("[extract_glb] Converting to GLB...")
|
238 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) # Verbose for debugging
|
|
|
|
|
239 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
240 |
print(f"[extract_glb] Exporting GLB to: {glb_path}")
|
241 |
glb.export(glb_path)
|
242 |
print("[extract_glb] GLB exported successfully.")
|
|
|
243 |
except Exception as e:
|
244 |
+
print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
|
245 |
traceback.print_exc()
|
246 |
raise gr.Error(f"Failed to extract GLB: {e}")
|
247 |
|
|
|
250 |
torch.cuda.empty_cache()
|
251 |
print("[extract_glb] Cleared CUDA cache.")
|
252 |
|
253 |
+
# Return path twice for both Model3D and DownloadButton components
|
254 |
print("[extract_glb] Returning GLB path.")
|
|
|
|
|
|
|
255 |
return glb_path, glb_path
|
256 |
|
257 |
|
|
|
258 |
@spaces.GPU
|
259 |
def extract_gaussian(
|
260 |
+
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
|
261 |
req: gr.Request
|
262 |
) -> Tuple[str, str]:
|
263 |
"""
|
264 |
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
|
265 |
"""
|
266 |
print("[extract_gaussian] Received request.")
|
267 |
+
if not isinstance(state_dict, dict):
|
268 |
+
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
|
269 |
+
raise gr.Error("Invalid state data received. Please generate the model first.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
272 |
+
os.makedirs(user_dir, exist_ok=True)
|
273 |
+
print(f"[extract_gaussian] User directory: {user_dir}")
|
274 |
|
275 |
+
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
276 |
+
try:
|
277 |
+
gs, _ = unpack_state(state_dict) # Only need Gaussian part
|
278 |
+
except Exception as e:
|
279 |
+
print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
|
280 |
+
traceback.print_exc()
|
281 |
+
raise gr.Error(f"Failed to unpack state: {e}")
|
282 |
|
283 |
+
# --- Export PLY ---
|
284 |
+
try:
|
285 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
286 |
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
|
287 |
gs.save_ply(gaussian_path)
|
288 |
print("[extract_gaussian] PLY saved successfully.")
|
|
|
289 |
except Exception as e:
|
290 |
+
print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
|
291 |
traceback.print_exc()
|
292 |
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
|
293 |
|
|
|
296 |
torch.cuda.empty_cache()
|
297 |
print("[extract_gaussian] Cleared CUDA cache.")
|
298 |
|
299 |
+
# Return path twice for both Model3D and DownloadButton components
|
300 |
print("[extract_gaussian] Returning PLY path.")
|
|
|
|
|
|
|
301 |
return gaussian_path, gaussian_path
|
302 |
|
303 |
|
|
|
309 |
* Type a text prompt and click "Generate" to create a 3D asset preview.
|
310 |
* Adjust extraction settings if desired.
|
311 |
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
|
|
|
312 |
""")
|
313 |
|
314 |
+
# --- State Buffer ---
|
315 |
+
# This hidden component will hold the dictionary returned by text_to_3d,
|
316 |
+
# acting as the state link between generation and extraction for the UI/API.
|
317 |
output_buf = gr.State()
|
318 |
|
319 |
with gr.Row():
|
320 |
+
with gr.Column(scale=1): # Input column
|
321 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
|
322 |
+
|
323 |
with gr.Accordion(label="Generation Settings", open=False):
|
324 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
325 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
331 |
with gr.Row():
|
332 |
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
|
333 |
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
|
334 |
+
|
335 |
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
|
336 |
+
|
337 |
+
with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default
|
338 |
+
# Tooltips added for clarity
|
339 |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
|
340 |
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
|
341 |
+
|
342 |
with gr.Row():
|
343 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
344 |
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
|
345 |
gr.Markdown("""
|
346 |
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
|
347 |
""")
|
348 |
+
|
349 |
+
with gr.Column(scale=1): # Output column
|
350 |
+
video_output = gr.Video(label="Generated 3D Preview (Geometry | Texture)", autoplay=True, loop=True, height=350) # Slightly larger height
|
351 |
+
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background
|
352 |
+
|
353 |
with gr.Row():
|
354 |
+
# Link download button visibility/interactivity to model_output potentially
|
355 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
356 |
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
|
357 |
|
358 |
# --- Event Handlers ---
|
359 |
print("Defining Gradio event handlers...")
|
|
|
|
|
|
|
|
|
360 |
|
361 |
+
# Handle session start/end
|
362 |
+
demo.load(start_session, inputs=None, outputs=None) # Pass None for clarity
|
363 |
+
demo.unload(end_session, inputs=None, outputs=None)
|
364 |
+
|
365 |
+
# --- Generate Button Click Flow ---
|
366 |
+
# 1. Get Seed -> 2. Run text_to_3d -> 3. Enable extraction buttons
|
367 |
generate_event = generate_btn.click(
|
368 |
get_seed,
|
369 |
inputs=[randomize_seed, seed],
|
370 |
outputs=[seed],
|
371 |
+
api_name="get_seed" # Optional API name
|
372 |
).then(
|
373 |
text_to_3d,
|
374 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
375 |
+
outputs=[output_buf, video_output], # output_buf receives state_dict
|
376 |
api_name="text_to_3d"
|
377 |
).then(
|
378 |
+
lambda: ( # Return tuple for multiple outputs
|
379 |
+
gr.Button(interactive=True),
|
380 |
+
gr.Button(interactive=True),
|
381 |
+
gr.DownloadButton(interactive=False), # Ensure download buttons are disabled initially
|
382 |
+
gr.DownloadButton(interactive=False)
|
383 |
),
|
384 |
+
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], # Update interactivity
|
|
|
385 |
)
|
386 |
|
387 |
+
# --- Clear video/model outputs if prompt changes (optional, prevents confusion)
|
388 |
+
# text_prompt.change(lambda: (None, None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, model_output, extract_glb_btn, extract_gs_btn])
|
389 |
+
|
390 |
+
# --- Extract GLB Button Click Flow ---
|
391 |
+
# 1. Run extract_glb -> 2. Update Model3D and Download Button
|
392 |
extract_glb_event = extract_glb_btn.click(
|
393 |
extract_glb,
|
394 |
+
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf
|
395 |
+
outputs=[model_output, download_glb], # Returns path to both
|
396 |
api_name="extract_glb"
|
397 |
).then(
|
398 |
+
lambda: gr.DownloadButton(interactive=True), # Enable download button
|
|
|
399 |
outputs=[download_glb],
|
400 |
)
|
401 |
|
402 |
+
# --- Extract Gaussian Button Click Flow ---
|
403 |
+
# 1. Run extract_gaussian -> 2. Update Model3D and Download Button
|
404 |
extract_gs_event = extract_gs_btn.click(
|
405 |
extract_gaussian,
|
406 |
+
inputs=[output_buf], # Pass the state_dict via output_buf
|
407 |
+
outputs=[model_output, download_gs], # Returns path to both
|
408 |
api_name="extract_gaussian"
|
409 |
).then(
|
410 |
+
lambda: gr.DownloadButton(interactive=True), # Enable download button
|
|
|
411 |
outputs=[download_gs],
|
412 |
)
|
413 |
|
414 |
+
# --- Clear Download Button Interactivity when model preview is cleared ---
|
415 |
+
# This might be redundant if generate disables them, but adds safety
|
416 |
model_output.clear(
|
417 |
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
|
|
|
418 |
outputs=[download_glb, download_gs]
|
419 |
)
|
420 |
+
video_output.clear( # Also disable extraction if video is cleared (e.g., new generation starts)
|
421 |
lambda: (
|
422 |
+
gr.Button(interactive=False),
|
423 |
+
gr.Button(interactive=False),
|
424 |
+
gr.DownloadButton(interactive=False),
|
425 |
+
gr.DownloadButton(interactive=False)
|
426 |
),
|
|
|
427 |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
|
428 |
)
|
429 |
|
|
|
433 |
# --- Launch the Gradio app ---
|
434 |
if __name__ == "__main__":
|
435 |
print("Loading Trellis pipeline...")
|
|
|
|
|
436 |
try:
|
437 |
+
# Ensure model/variant matches requirements, use revision if needed
|
438 |
pipeline = TrellisTextTo3DPipeline.from_pretrained(
|
439 |
+
"JeffreyXiang/TRELLIS-text-xlarge",
|
440 |
+
# revision="main", # Specify if needed
|
441 |
+
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
|
442 |
)
|
443 |
+
# Move to GPU if available
|
444 |
if torch.cuda.is_available():
|
445 |
pipeline = pipeline.to("cuda")
|
446 |
print("✅ Trellis pipeline loaded successfully to GPU.")
|
447 |
else:
|
448 |
+
print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
|
449 |
print("✅ Trellis pipeline loaded successfully to CPU.")
|
|
|
450 |
except Exception as e:
|
451 |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
452 |
traceback.print_exc()
|
453 |
+
# Exit if pipeline is critical for the app to run
|
454 |
print("❌ Exiting due to pipeline load failure.")
|
455 |
sys.exit(1)
|
456 |
|
457 |
+
print("Launching Gradio demo...")
|
458 |
+
# Set share=True if you need a public link (e.g., for testing from outside local network)
|
459 |
+
# Set server_name="0.0.0.0" to allow access from local network IP
|
460 |
+
demo.queue().launch( # Use queue for potentially long-running tasks
|
461 |
+
# server_name="0.0.0.0",
|
462 |
+
# share=False,
|
463 |
+
debug=True # Enable debug mode for more logs
|
464 |
+
)
|
465 |
+
print("Gradio demo launched.")
|