Spaces:
Running
on
Zero
Running
on
Zero
# Version: 1.1.0 - API State Fix (2025-05-04) | |
# Changes: | |
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state` | |
# as the first return value. This ensures the dictionary is available via the API. | |
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument | |
# instead of relying on the implicit `gr.State` object type when called via API. | |
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`) | |
# so the UI continues to function by passing the dictionary through output_buf. | |
# - Added minor safety checks and logging. | |
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
# Fix potential SpConv issue if needed, try 'hash' or 'native' | |
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set | |
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisTextTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import traceback | |
import sys | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
"""Creates a temporary directory for the user session.""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"Started session, created directory: {user_dir}") | |
def end_session(req: gr.Request): | |
"""Removes the temporary directory for the user session.""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
print(f"Ended session, removed directory: {user_dir}") | |
except OSError as e: | |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr) | |
else: | |
print(f"Ended session, directory already removed: {user_dir}") | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
"""Packs Gaussian and Mesh data into a serializable dictionary.""" | |
# Ensure tensors are on CPU and converted to numpy before returning the dict | |
print("[pack_state] Packing state to dictionary...") | |
packed_data = { | |
'gaussian': { | |
# Spread init_params first to ensure correct types | |
**{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included | |
'_xyz': gs._xyz.detach().cpu().numpy(), | |
'_features_dc': gs._features_dc.detach().cpu().numpy(), | |
'_scaling': gs._scaling.detach().cpu().numpy(), | |
'_rotation': gs._rotation.detach().cpu().numpy(), | |
'_opacity': gs._opacity.detach().cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.detach().cpu().numpy(), | |
'faces': mesh.faces.detach().cpu().numpy(), | |
}, | |
} | |
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}") | |
return packed_data | |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]: | |
"""Unpacks Gaussian and Mesh data from a dictionary.""" | |
print("[unpack_state] Unpacking state from dictionary...") | |
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict: | |
raise ValueError("Invalid state_dict structure passed to unpack_state.") | |
# Ensure the device is correctly set when unpacking | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"[unpack_state] Using device: {device}") | |
gauss_data = state_dict['gaussian'] | |
mesh_data = state_dict['mesh'] | |
# Recreate Gaussian object using parameters stored during packing | |
gs = Gaussian( | |
aabb=gauss_data.get('aabb'), # Use .get for safety | |
sh_degree=gauss_data.get('sh_degree'), | |
mininum_kernel_size=gauss_data.get('mininum_kernel_size'), | |
scaling_bias=gauss_data.get('scaling_bias'), | |
opacity_bias=gauss_data.get('opacity_bias'), | |
scaling_activation=gauss_data.get('scaling_activation'), | |
) | |
# Load tensors, ensuring they are created on the correct device | |
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32) | |
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32) | |
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32) | |
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32) | |
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32) | |
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}") | |
# Recreate mesh object using edict for compatibility if needed elsewhere | |
mesh = edict( | |
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32), | |
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64 | |
) | |
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}") | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
"""Gets a seed value, randomizing if requested.""" | |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}") | |
return int(new_seed) # Ensure it's a standard int | |
def text_to_3d( | |
prompt: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: # Return type changed for clarity | |
""" | |
Generates a 3D model (Gaussian and Mesh) from text and returns a | |
serializable state dictionary and a video preview path. | |
""" | |
print(f"[text_to_3d] Received prompt: '{prompt}', Seed: {seed}") | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"[text_to_3d] User directory: {user_dir}") | |
# --- Generation Pipeline --- | |
try: | |
print("[text_to_3d] Running Trellis pipeline...") | |
outputs = pipeline.run( | |
prompt, | |
seed=seed, | |
formats=["gaussian", "mesh"], # Ensure both are generated | |
sparse_structure_sampler_params={ | |
"steps": int(ss_sampling_steps), # Ensure steps are int | |
"cfg_strength": float(ss_guidance_strength), | |
}, | |
slat_sampler_params={ | |
"steps": int(slat_sampling_steps), # Ensure steps are int | |
"cfg_strength": float(slat_guidance_strength), | |
}, | |
) | |
print("[text_to_3d] Pipeline run completed.") | |
except Exception as e: | |
print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
# Return an empty dict and maybe an error indicator path or None? | |
# For now, re-raise to signal failure clearly upstream. | |
raise gr.Error(f"Trellis pipeline failed: {e}") | |
# --- Create Serializable State Dictionary --- VITAL CHANGE for API | |
# This dictionary holds the necessary data for later extraction. | |
try: | |
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
except Exception as e: | |
print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
raise gr.Error(f"Failed to pack state: {e}") | |
# --- Render Video Preview --- | |
try: | |
print("[text_to_3d] Rendering video preview...") | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
# Ensure video frames are uint8 | |
video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting | |
print(f"[text_to_3d] Video saved to: {video_path}") | |
except Exception as e: | |
print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
# Still return state_dict, but maybe signal video error? Return None for path. | |
video_path = None # Indicate video failure | |
# --- Cleanup and Return --- | |
# Clear CUDA cache if GPU was used | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("[text_to_3d] Cleared CUDA cache.") | |
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API | |
print("[text_to_3d] Returning state dictionary and video path.") | |
return state_dict, video_path | |
# Increased duration slightly | |
def extract_glb( | |
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extracts a GLB file from the provided 3D model state dictionary. | |
""" | |
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}") | |
if not isinstance(state_dict, dict): | |
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).") | |
raise gr.Error("Invalid state data received. Please generate the model first.") | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"[extract_glb] User directory: {user_dir}") | |
# --- Unpack state from the dictionary --- VITAL CHANGE for API | |
try: | |
gs, mesh = unpack_state(state_dict) | |
except Exception as e: | |
print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
raise gr.Error(f"Failed to unpack state: {e}") | |
# --- Postprocessing and Export --- | |
try: | |
print("[extract_glb] Converting to GLB...") | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) # Verbose for debugging | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
print(f"[extract_glb] Exporting GLB to: {glb_path}") | |
glb.export(glb_path) | |
print("[extract_glb] GLB exported successfully.") | |
except Exception as e: | |
print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
raise gr.Error(f"Failed to extract GLB: {e}") | |
# --- Cleanup and Return --- | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("[extract_glb] Cleared CUDA cache.") | |
# Return path twice for both Model3D and DownloadButton components | |
print("[extract_glb] Returning GLB path.") | |
return glb_path, glb_path | |
def extract_gaussian( | |
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly | |
req: gr.Request | |
) -> Tuple[str, str]: | |
""" | |
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary. | |
""" | |
print("[extract_gaussian] Received request.") | |
if not isinstance(state_dict, dict): | |
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).") | |
raise gr.Error("Invalid state data received. Please generate the model first.") | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"[extract_gaussian] User directory: {user_dir}") | |
# --- Unpack state from the dictionary --- VITAL CHANGE for API | |
try: | |
gs, _ = unpack_state(state_dict) # Only need Gaussian part | |
except Exception as e: | |
print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
raise gr.Error(f"Failed to unpack state: {e}") | |
# --- Export PLY --- | |
try: | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}") | |
gs.save_ply(gaussian_path) | |
print("[extract_gaussian] PLY saved successfully.") | |
except Exception as e: | |
print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr) | |
traceback.print_exc() | |
raise gr.Error(f"Failed to extract Gaussian PLY: {e}") | |
# --- Cleanup and Return --- | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("[extract_gaussian] Cleared CUDA cache.") | |
# Return path twice for both Model3D and DownloadButton components | |
print("[extract_gaussian] Returning PLY path.") | |
return gaussian_path, gaussian_path | |
# --- Gradio UI Definition --- | |
print("Setting up Gradio Blocks interface...") | |
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo: | |
gr.Markdown(""" | |
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Type a text prompt and click "Generate" to create a 3D asset preview. | |
* Adjust extraction settings if desired. | |
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file. | |
""") | |
# --- State Buffer --- | |
# This hidden component will hold the dictionary returned by text_to_3d, | |
# acting as the state link between generation and extraction for the UI/API. | |
output_buf = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=1): # Input column | |
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon") | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1) | |
gr.Markdown("--- \n **Stage 2: Structured Latent Generation**") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1) | |
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1) | |
generate_btn = gr.Button("Generate 3D Preview", variant="primary") | |
with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default | |
# Tooltips added for clarity | |
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)") | |
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map") | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False) | |
gr.Markdown(""" | |
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.* | |
""") | |
with gr.Column(scale=1): # Output column | |
video_output = gr.Video(label="Generated 3D Preview (Geometry | Texture)", autoplay=True, loop=True, height=350) # Slightly larger height | |
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background | |
with gr.Row(): | |
# Link download button visibility/interactivity to model_output potentially | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False) | |
# --- Event Handlers --- | |
print("Defining Gradio event handlers...") | |
# Handle session start/end | |
demo.load(start_session) | |
demo.unload(end_session) | |
# --- Generate Button Click Flow --- | |
# 1. Get Seed -> 2. Run text_to_3d -> 3. Enable extraction buttons | |
generate_event = generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
api_name="get_seed" # Optional API name | |
).then( | |
text_to_3d, | |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], # output_buf receives state_dict | |
api_name="text_to_3d" | |
).then( | |
lambda: ( # Return tuple for multiple outputs | |
gr.Button(interactive=True), | |
gr.Button(interactive=True), | |
gr.DownloadButton(interactive=False), # Ensure download buttons are disabled initially | |
gr.DownloadButton(interactive=False) | |
), | |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], # Update interactivity | |
) | |
# --- Clear video/model outputs if prompt changes (optional, prevents confusion) | |
# text_prompt.change(lambda: (None, None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, model_output, extract_glb_btn, extract_gs_btn]) | |
# --- Extract GLB Button Click Flow --- | |
# 1. Run extract_glb -> 2. Update Model3D and Download Button | |
extract_glb_event = extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf | |
outputs=[model_output, download_glb], # Returns path to both | |
api_name="extract_glb" | |
).then( | |
lambda: gr.DownloadButton(interactive=True), # Enable download button | |
outputs=[download_glb], | |
) | |
# --- Extract Gaussian Button Click Flow --- | |
# 1. Run extract_gaussian -> 2. Update Model3D and Download Button | |
extract_gs_event = extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], # Pass the state_dict via output_buf | |
outputs=[model_output, download_gs], # Returns path to both | |
api_name="extract_gaussian" | |
).then( | |
lambda: gr.DownloadButton(interactive=True), # Enable download button | |
outputs=[download_gs], | |
) | |
# --- Clear Download Button Interactivity when model preview is cleared --- | |
# This might be redundant if generate disables them, but adds safety | |
model_output.clear( | |
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)), | |
outputs=[download_glb, download_gs] | |
) | |
video_output.clear( # Also disable extraction if video is cleared (e.g., new generation starts) | |
lambda: ( | |
gr.Button(interactive=False), | |
gr.Button(interactive=False), | |
gr.DownloadButton(interactive=False), | |
gr.DownloadButton(interactive=False) | |
), | |
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], | |
) | |
print("Gradio interface setup complete.") | |
# --- Launch the Gradio app --- | |
if __name__ == "__main__": | |
print("Loading Trellis pipeline...") | |
try: | |
# Ensure model/variant matches requirements, use revision if needed | |
pipeline = TrellisTextTo3DPipeline.from_pretrained( | |
"JeffreyXiang/TRELLIS-text-xlarge", | |
# revision="main", # Specify if needed | |
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory | |
) | |
# Move to GPU if available | |
if torch.cuda.is_available(): | |
pipeline = pipeline.to("cuda") | |
print("✅ Trellis pipeline loaded successfully to GPU.") | |
else: | |
print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).") | |
print("✅ Trellis pipeline loaded successfully to CPU.") | |
except Exception as e: | |
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr) | |
traceback.print_exc() | |
# Exit if pipeline is critical for the app to run | |
print("❌ Exiting due to pipeline load failure.") | |
sys.exit(1) | |
print("Launching Gradio demo...") | |
# Set share=True if you need a public link (e.g., for testing from outside local network) | |
# Set server_name="0.0.0.0" to allow access from local network IP | |
demo.queue().launch( # Use queue for potentially long-running tasks | |
# server_name="0.0.0.0", | |
# share=False, | |
debug=True # Enable debug mode for more logs | |
) | |
print("Gradio demo launched.") |