dkatz2391's picture
demo load
ce32001 verified
raw
history blame
20.9 kB
# Version: 1.1.0 - API State Fix (2025-05-04)
# Changes:
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
# as the first return value. This ensures the dictionary is available via the API.
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument
# instead of relying on the implicit `gr.State` object type when called via API.
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
# so the UI continues to function by passing the dictionary through output_buf.
# - Added minor safety checks and logging.
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
# Fix potential SpConv issue if needed, try 'hash' or 'native'
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
"""Creates a temporary directory for the user session."""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, created directory: {user_dir}")
def end_session(req: gr.Request):
"""Removes the temporary directory for the user session."""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory already removed: {user_dir}")
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a serializable dictionary."""
# Ensure tensors are on CPU and converted to numpy before returning the dict
print("[pack_state] Packing state to dictionary...")
packed_data = {
'gaussian': {
# Spread init_params first to ensure correct types
**{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included
'_xyz': gs._xyz.detach().cpu().numpy(),
'_features_dc': gs._features_dc.detach().cpu().numpy(),
'_scaling': gs._scaling.detach().cpu().numpy(),
'_rotation': gs._rotation.detach().cpu().numpy(),
'_opacity': gs._opacity.detach().cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy(),
'faces': mesh.faces.detach().cpu().numpy(),
},
}
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
return packed_data
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
"""Unpacks Gaussian and Mesh data from a dictionary."""
print("[unpack_state] Unpacking state from dictionary...")
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
raise ValueError("Invalid state_dict structure passed to unpack_state.")
# Ensure the device is correctly set when unpacking
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"[unpack_state] Using device: {device}")
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
# Recreate Gaussian object using parameters stored during packing
gs = Gaussian(
aabb=gauss_data.get('aabb'), # Use .get for safety
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
# Load tensors, ensuring they are created on the correct device
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
# Recreate mesh object using edict for compatibility if needed elsewhere
mesh = edict(
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64
)
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Gets a seed value, randomizing if requested."""
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
return int(new_seed) # Ensure it's a standard int
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]: # Return type changed for clarity
"""
Generates a 3D model (Gaussian and Mesh) from text and returns a
serializable state dictionary and a video preview path.
"""
print(f"[text_to_3d] Received prompt: '{prompt}', Seed: {seed}")
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[text_to_3d] User directory: {user_dir}")
# --- Generation Pipeline ---
try:
print("[text_to_3d] Running Trellis pipeline...")
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"], # Ensure both are generated
sparse_structure_sampler_params={
"steps": int(ss_sampling_steps), # Ensure steps are int
"cfg_strength": float(ss_guidance_strength),
},
slat_sampler_params={
"steps": int(slat_sampling_steps), # Ensure steps are int
"cfg_strength": float(slat_guidance_strength),
},
)
print("[text_to_3d] Pipeline run completed.")
except Exception as e:
print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr)
traceback.print_exc()
# Return an empty dict and maybe an error indicator path or None?
# For now, re-raise to signal failure clearly upstream.
raise gr.Error(f"Trellis pipeline failed: {e}")
# --- Create Serializable State Dictionary --- VITAL CHANGE for API
# This dictionary holds the necessary data for later extraction.
try:
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
except Exception as e:
print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to pack state: {e}")
# --- Render Video Preview ---
try:
print("[text_to_3d] Rendering video preview...")
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
# Ensure video frames are uint8
video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting
print(f"[text_to_3d] Video saved to: {video_path}")
except Exception as e:
print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
traceback.print_exc()
# Still return state_dict, but maybe signal video error? Return None for path.
video_path = None # Indicate video failure
# --- Cleanup and Return ---
# Clear CUDA cache if GPU was used
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[text_to_3d] Cleared CUDA cache.")
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
print("[text_to_3d] Returning state dictionary and video path.")
return state_dict, video_path
@spaces.GPU(duration=120) # Increased duration slightly
def extract_glb(
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extracts a GLB file from the provided 3D model state dictionary.
"""
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
if not isinstance(state_dict, dict):
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_glb] User directory: {user_dir}")
# --- Unpack state from the dictionary --- VITAL CHANGE for API
try:
gs, mesh = unpack_state(state_dict)
except Exception as e:
print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to unpack state: {e}")
# --- Postprocessing and Export ---
try:
print("[extract_glb] Converting to GLB...")
glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) # Verbose for debugging
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[extract_glb] Exporting GLB to: {glb_path}")
glb.export(glb_path)
print("[extract_glb] GLB exported successfully.")
except Exception as e:
print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract GLB: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_glb] Cleared CUDA cache.")
# Return path twice for both Model3D and DownloadButton components
print("[extract_glb] Returning GLB path.")
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
req: gr.Request
) -> Tuple[str, str]:
"""
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
"""
print("[extract_gaussian] Received request.")
if not isinstance(state_dict, dict):
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_gaussian] User directory: {user_dir}")
# --- Unpack state from the dictionary --- VITAL CHANGE for API
try:
gs, _ = unpack_state(state_dict) # Only need Gaussian part
except Exception as e:
print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to unpack state: {e}")
# --- Export PLY ---
try:
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
gs.save_ply(gaussian_path)
print("[extract_gaussian] PLY saved successfully.")
except Exception as e:
print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_gaussian] Cleared CUDA cache.")
# Return path twice for both Model3D and DownloadButton components
print("[extract_gaussian] Returning PLY path.")
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset preview.
* Adjust extraction settings if desired.
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
""")
# --- State Buffer ---
# This hidden component will hold the dictionary returned by text_to_3d,
# acting as the state link between generation and extraction for the UI/API.
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1): # Input column
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default
# Tooltips added for clarity
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
""")
with gr.Column(scale=1): # Output column
video_output = gr.Video(label="Generated 3D Preview (Geometry | Texture)", autoplay=True, loop=True, height=350) # Slightly larger height
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background
with gr.Row():
# Link download button visibility/interactivity to model_output potentially
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
# --- Event Handlers ---
print("Defining Gradio event handlers...")
# Handle session start/end
demo.load(start_session)
demo.unload(end_session)
# --- Generate Button Click Flow ---
# 1. Get Seed -> 2. Run text_to_3d -> 3. Enable extraction buttons
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
api_name="get_seed" # Optional API name
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output], # output_buf receives state_dict
api_name="text_to_3d"
).then(
lambda: ( # Return tuple for multiple outputs
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.DownloadButton(interactive=False), # Ensure download buttons are disabled initially
gr.DownloadButton(interactive=False)
),
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], # Update interactivity
)
# --- Clear video/model outputs if prompt changes (optional, prevents confusion)
# text_prompt.change(lambda: (None, None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, model_output, extract_glb_btn, extract_gs_btn])
# --- Extract GLB Button Click Flow ---
# 1. Run extract_glb -> 2. Update Model3D and Download Button
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf
outputs=[model_output, download_glb], # Returns path to both
api_name="extract_glb"
).then(
lambda: gr.DownloadButton(interactive=True), # Enable download button
outputs=[download_glb],
)
# --- Extract Gaussian Button Click Flow ---
# 1. Run extract_gaussian -> 2. Update Model3D and Download Button
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf], # Pass the state_dict via output_buf
outputs=[model_output, download_gs], # Returns path to both
api_name="extract_gaussian"
).then(
lambda: gr.DownloadButton(interactive=True), # Enable download button
outputs=[download_gs],
)
# --- Clear Download Button Interactivity when model preview is cleared ---
# This might be redundant if generate disables them, but adds safety
model_output.clear(
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
outputs=[download_glb, download_gs]
)
video_output.clear( # Also disable extraction if video is cleared (e.g., new generation starts)
lambda: (
gr.Button(interactive=False),
gr.Button(interactive=False),
gr.DownloadButton(interactive=False),
gr.DownloadButton(interactive=False)
),
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
print("Gradio interface setup complete.")
# --- Launch the Gradio app ---
if __name__ == "__main__":
print("Loading Trellis pipeline...")
try:
# Ensure model/variant matches requirements, use revision if needed
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge",
# revision="main", # Specify if needed
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
)
# Move to GPU if available
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
print("✅ Trellis pipeline loaded successfully to GPU.")
else:
print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
print("✅ Trellis pipeline loaded successfully to CPU.")
except Exception as e:
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
traceback.print_exc()
# Exit if pipeline is critical for the app to run
print("❌ Exiting due to pipeline load failure.")
sys.exit(1)
print("Launching Gradio demo...")
# Set share=True if you need a public link (e.g., for testing from outside local network)
# Set server_name="0.0.0.0" to allow access from local network IP
demo.queue().launch( # Use queue for potentially long-running tasks
# server_name="0.0.0.0",
# share=False,
debug=True # Enable debug mode for more logs
)
print("Gradio demo launched.")