File size: 20,920 Bytes
b078538
1809fe4
b078538
 
 
 
 
 
 
1809fe4
 
696b9f6
1809fe4
 
 
 
b078538
 
 
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
b078538
1809fe4
696b9f6
b078538
 
1809fe4
 
 
b078538
 
 
 
1809fe4
 
 
b078538
 
 
 
 
 
 
 
 
1809fe4
 
 
 
b078538
1809fe4
b078538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809fe4
 
 
 
 
b078538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809fe4
b078538
1809fe4
 
 
 
 
 
b078538
1809fe4
988efc8
 
 
 
 
 
 
 
 
 
b078538
988efc8
63ce34f
b078538
988efc8
b078538
 
 
 
 
 
63ce34f
b078538
63ce34f
b078538
63ce34f
b078538
63ce34f
b078538
63ce34f
 
 
b078538
63ce34f
 
 
b078538
 
 
 
 
 
 
988efc8
b078538
 
 
63ce34f
b078538
 
 
 
9df9f29
b078538
 
 
 
 
 
 
 
 
 
63ce34f
b078538
63ce34f
b078538
 
1809fe4
 
b078538
1809fe4
 
b078538
1809fe4
b078538
 
1809fe4
 
 
b078538
1809fe4
b078538
1809fe4
 
 
 
 
 
 
 
b078538
 
 
1809fe4
b078538
 
 
1809fe4
b078538
 
1809fe4
b078538
 
 
 
1809fe4
b078538
 
1809fe4
b078538
1809fe4
 
 
 
 
b078538
1809fe4
696b9f6
1809fe4
 
 
 
 
 
b078538
1809fe4
 
 
 
 
 
b078538
1809fe4
 
 
 
 
 
b078538
 
 
1809fe4
b078538
 
 
1809fe4
b078538
 
 
 
 
 
 
1809fe4
b078538
 
1809fe4
 
 
 
 
b078538
1809fe4
696b9f6
63ce34f
 
 
 
1809fe4
 
b078538
1809fe4
 
63ce34f
988efc8
3447081
1809fe4
 
 
 
 
 
 
 
 
b078538
 
 
1809fe4
 
 
b078538
1809fe4
b078538
1809fe4
 
 
 
 
 
 
 
 
 
 
b078538
1809fe4
b078538
 
 
1809fe4
 
b078538
1809fe4
 
 
 
 
 
b078538
 
 
 
 
1809fe4
b078538
1809fe4
 
 
 
 
3447081
b078538
ce32001
 
b078538
 
 
1809fe4
 
 
 
b078538
1809fe4
 
 
b078538
1809fe4
 
b078538
 
 
 
 
1809fe4
b078538
1809fe4
 
b078538
 
 
 
 
1809fe4
 
b078538
 
1809fe4
 
b078538
1809fe4
 
 
b078538
 
1809fe4
 
b078538
 
1809fe4
 
b078538
1809fe4
 
 
b078538
 
1809fe4
 
 
 
b078538
1809fe4
b078538
 
 
 
1809fe4
 
 
 
 
 
 
 
 
 
 
b078538
1809fe4
b078538
 
 
1809fe4
b078538
1809fe4
 
 
 
b078538
1809fe4
 
 
 
b078538
1809fe4
9df9f29
1809fe4
b078538
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# Version: 1.1.0 - API State Fix (2025-05-04)
# Changes:
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
#   as the first return value. This ensures the dictionary is available via the API.
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument
#   instead of relying on the implicit `gr.State` object type when called via API.
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
#   so the UI continues to function by passing the dictionary through output_buf.
# - Added minor safety checks and logging.

import gradio as gr
import spaces

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
# Fix potential SpConv issue if needed, try 'hash' or 'native'
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original

from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

import traceback
import sys


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    """Creates a temporary directory for the user session."""
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    print(f"Started session, created directory: {user_dir}")


def end_session(req: gr.Request):
    """Removes the temporary directory for the user session."""
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if os.path.exists(user_dir):
      try:
          shutil.rmtree(user_dir)
          print(f"Ended session, removed directory: {user_dir}")
      except OSError as e:
          print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
    else:
        print(f"Ended session, directory already removed: {user_dir}")


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    """Packs Gaussian and Mesh data into a serializable dictionary."""
    # Ensure tensors are on CPU and converted to numpy before returning the dict
    print("[pack_state] Packing state to dictionary...")
    packed_data = {
        'gaussian': {
            # Spread init_params first to ensure correct types
            **{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included
            '_xyz': gs._xyz.detach().cpu().numpy(),
            '_features_dc': gs._features_dc.detach().cpu().numpy(),
            '_scaling': gs._scaling.detach().cpu().numpy(),
            '_rotation': gs._rotation.detach().cpu().numpy(),
            '_opacity': gs._opacity.detach().cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.detach().cpu().numpy(),
            'faces': mesh.faces.detach().cpu().numpy(),
        },
    }
    print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
    return packed_data


def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
    """Unpacks Gaussian and Mesh data from a dictionary."""
    print("[unpack_state] Unpacking state from dictionary...")
    if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
        raise ValueError("Invalid state_dict structure passed to unpack_state.")

    # Ensure the device is correctly set when unpacking
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"[unpack_state] Using device: {device}")

    gauss_data = state_dict['gaussian']
    mesh_data = state_dict['mesh']

    # Recreate Gaussian object using parameters stored during packing
    gs = Gaussian(
        aabb=gauss_data.get('aabb'), # Use .get for safety
        sh_degree=gauss_data.get('sh_degree'),
        mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
        scaling_bias=gauss_data.get('scaling_bias'),
        opacity_bias=gauss_data.get('opacity_bias'),
        scaling_activation=gauss_data.get('scaling_activation'),
    )
    # Load tensors, ensuring they are created on the correct device
    gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
    gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
    gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
    gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
    gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
    print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")

    # Recreate mesh object using edict for compatibility if needed elsewhere
    mesh = edict(
        vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
        faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64
    )
    print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")

    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """Gets a seed value, randomizing if requested."""
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
    return int(new_seed) # Ensure it's a standard int


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]: # Return type changed for clarity
    """
    Generates a 3D model (Gaussian and Mesh) from text and returns a
    serializable state dictionary and a video preview path.
    """
    print(f"[text_to_3d] Received prompt: '{prompt}', Seed: {seed}")
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    print(f"[text_to_3d] User directory: {user_dir}")

    # --- Generation Pipeline ---
    try:
        print("[text_to_3d] Running Trellis pipeline...")
        outputs = pipeline.run(
            prompt,
            seed=seed,
            formats=["gaussian", "mesh"], # Ensure both are generated
            sparse_structure_sampler_params={
                "steps": int(ss_sampling_steps), # Ensure steps are int
                "cfg_strength": float(ss_guidance_strength),
            },
            slat_sampler_params={
                "steps": int(slat_sampling_steps), # Ensure steps are int
                "cfg_strength": float(slat_guidance_strength),
            },
        )
        print("[text_to_3d] Pipeline run completed.")
    except Exception as e:
        print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr)
        traceback.print_exc()
        # Return an empty dict and maybe an error indicator path or None?
        # For now, re-raise to signal failure clearly upstream.
        raise gr.Error(f"Trellis pipeline failed: {e}")

    # --- Create Serializable State Dictionary --- VITAL CHANGE for API
    # This dictionary holds the necessary data for later extraction.
    try:
        state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    except Exception as e:
        print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to pack state: {e}")

    # --- Render Video Preview ---
    try:
        print("[text_to_3d] Rendering video preview...")
        video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
        video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
        # Ensure video frames are uint8
        video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
        video_path = os.path.join(user_dir, 'sample.mp4')
        imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting
        print(f"[text_to_3d] Video saved to: {video_path}")
    except Exception as e:
        print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
        traceback.print_exc()
        # Still return state_dict, but maybe signal video error? Return None for path.
        video_path = None # Indicate video failure

    # --- Cleanup and Return ---
    # Clear CUDA cache if GPU was used
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[text_to_3d] Cleared CUDA cache.")

    # --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
    print("[text_to_3d] Returning state dictionary and video path.")
    return state_dict, video_path


@spaces.GPU(duration=120) # Increased duration slightly
def extract_glb(
    state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extracts a GLB file from the provided 3D model state dictionary.
    """
    print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
    if not isinstance(state_dict, dict):
        print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
        raise gr.Error("Invalid state data received. Please generate the model first.")

    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    print(f"[extract_glb] User directory: {user_dir}")

    # --- Unpack state from the dictionary --- VITAL CHANGE for API
    try:
        gs, mesh = unpack_state(state_dict)
    except Exception as e:
        print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to unpack state: {e}")

    # --- Postprocessing and Export ---
    try:
        print("[extract_glb] Converting to GLB...")
        glb = postprocessing_utils.to_glb(gs, mesh, simplify=float(mesh_simplify), texture_size=int(texture_size), verbose=True) # Verbose for debugging
        glb_path = os.path.join(user_dir, 'sample.glb')
        print(f"[extract_glb] Exporting GLB to: {glb_path}")
        glb.export(glb_path)
        print("[extract_glb] GLB exported successfully.")
    except Exception as e:
        print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract GLB: {e}")

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_glb] Cleared CUDA cache.")

    # Return path twice for both Model3D and DownloadButton components
    print("[extract_glb] Returning GLB path.")
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(
    state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
    req: gr.Request
) -> Tuple[str, str]:
    """
    Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
    """
    print("[extract_gaussian] Received request.")
    if not isinstance(state_dict, dict):
        print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
        raise gr.Error("Invalid state data received. Please generate the model first.")

    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    print(f"[extract_gaussian] User directory: {user_dir}")

    # --- Unpack state from the dictionary --- VITAL CHANGE for API
    try:
        gs, _ = unpack_state(state_dict) # Only need Gaussian part
    except Exception as e:
        print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to unpack state: {e}")

    # --- Export PLY ---
    try:
        gaussian_path = os.path.join(user_dir, 'sample.ply')
        print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
        gs.save_ply(gaussian_path)
        print("[extract_gaussian] PLY saved successfully.")
    except Exception as e:
        print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract Gaussian PLY: {e}")

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_gaussian] Cleared CUDA cache.")

    # Return path twice for both Model3D and DownloadButton components
    print("[extract_gaussian] Returning PLY path.")
    return gaussian_path, gaussian_path


# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
    gr.Markdown("""
    # Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset preview.
    * Adjust extraction settings if desired.
    * Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
    """)

    # --- State Buffer ---
    # This hidden component will hold the dictionary returned by text_to_3d,
    # acting as the state link between generation and extraction for the UI/API.
    output_buf = gr.State()

    with gr.Row():
        with gr.Column(scale=1): # Input column
            text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate 3D Preview", variant="primary")

            with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default
                # Tooltips added for clarity
                mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
                texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")

            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
                        """)

        with gr.Column(scale=1): # Output column
            video_output = gr.Video(label="Generated 3D Preview (Geometry | Texture)", autoplay=True, loop=True, height=350) # Slightly larger height
            model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background

            with gr.Row():
                # Link download button visibility/interactivity to model_output potentially
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)

    # --- Event Handlers ---
    print("Defining Gradio event handlers...")

    # Handle session start/end
demo.load(start_session)
demo.unload(end_session)

    # --- Generate Button Click Flow ---
    # 1. Get Seed -> 2. Run text_to_3d -> 3. Enable extraction buttons
    generate_event = generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
        api_name="get_seed" # Optional API name
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output], # output_buf receives state_dict
        api_name="text_to_3d"
    ).then(
        lambda: ( # Return tuple for multiple outputs
            gr.Button(interactive=True),
            gr.Button(interactive=True),
            gr.DownloadButton(interactive=False), # Ensure download buttons are disabled initially
            gr.DownloadButton(interactive=False)
        ),
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs], # Update interactivity
    )

    # --- Clear video/model outputs if prompt changes (optional, prevents confusion)
    # text_prompt.change(lambda: (None, None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, model_output, extract_glb_btn, extract_gs_btn])

    # --- Extract GLB Button Click Flow ---
    # 1. Run extract_glb -> 2. Update Model3D and Download Button
    extract_glb_event = extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf
        outputs=[model_output, download_glb], # Returns path to both
        api_name="extract_glb"
    ).then(
        lambda: gr.DownloadButton(interactive=True), # Enable download button
        outputs=[download_glb],
    )

    # --- Extract Gaussian Button Click Flow ---
    # 1. Run extract_gaussian -> 2. Update Model3D and Download Button
    extract_gs_event = extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf], # Pass the state_dict via output_buf
        outputs=[model_output, download_gs], # Returns path to both
        api_name="extract_gaussian"
    ).then(
        lambda: gr.DownloadButton(interactive=True), # Enable download button
        outputs=[download_gs],
    )

    # --- Clear Download Button Interactivity when model preview is cleared ---
    # This might be redundant if generate disables them, but adds safety
    model_output.clear(
        lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
        outputs=[download_glb, download_gs]
    )
    video_output.clear( # Also disable extraction if video is cleared (e.g., new generation starts)
         lambda: (
            gr.Button(interactive=False),
            gr.Button(interactive=False),
            gr.DownloadButton(interactive=False),
            gr.DownloadButton(interactive=False)
        ),
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
    )

    print("Gradio interface setup complete.")


# --- Launch the Gradio app ---
if __name__ == "__main__":
    print("Loading Trellis pipeline...")
    try:
        # Ensure model/variant matches requirements, use revision if needed
        pipeline = TrellisTextTo3DPipeline.from_pretrained(
            "JeffreyXiang/TRELLIS-text-xlarge",
            # revision="main", # Specify if needed
            torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
        )
        # Move to GPU if available
        if torch.cuda.is_available():
            pipeline = pipeline.to("cuda")
            print("βœ… Trellis pipeline loaded successfully to GPU.")
        else:
            print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
            print("βœ… Trellis pipeline loaded successfully to CPU.")
    except Exception as e:
        print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
        traceback.print_exc()
        # Exit if pipeline is critical for the app to run
        print("❌ Exiting due to pipeline load failure.")
        sys.exit(1)

    print("Launching Gradio demo...")
    # Set share=True if you need a public link (e.g., for testing from outside local network)
    # Set server_name="0.0.0.0" to allow access from local network IP
    demo.queue().launch( # Use queue for potentially long-running tasks
        # server_name="0.0.0.0",
        # share=False,
        debug=True # Enable debug mode for more logs
    )
    print("Gradio demo launched.")