dkatz2391's picture
REvert and just ocmment out
696b9f6 verified
raw
history blame
21.1 kB
# Version: 1.1.0 - API State Fix + DEBUG (Video Disabled - Corrected Baseline) (2025-05-04)
# Changes:
# - Based *EXACTLY* on user-provided Version 1.1.0 code.
# - TEMPORARY DEBUGGING STEP: Commented out video rendering/saving in `text_to_3d`
# and return None for video_path to isolate the "Session not found" error.
# - All other code (imports, functions, UI bindings, pipeline loading) is from Version 1.1.0.
# - Removed incorrect `torch_dtype` argument from pipeline loading.
# - Removed incorrect `inputs`/`outputs` arguments from `demo.unload()`.
import gradio as gr
# NOTE: Ensuring 'spaces' is imported if decorators are used (was missing in user provided snippet but needed)
# If @spaces.GPU decorators are not used, this import is not needed.
# Assuming they ARE used based on previous context:
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
# Using path relative to file as in original user provided code
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
# Ensure base directory exists
try:
os.makedirs(TMP_DIR, exist_ok=True)
print(f"Using temporary directory: {TMP_DIR}")
except OSError as e:
print(f"Warning: Could not create base temp directory {TMP_DIR}: {e}", file=sys.stderr)
TMP_DIR = '.' # Fallback
print(f"Warning: Falling back to use current directory for temp files: {os.path.abspath(TMP_DIR)}")
def start_session(req: gr.Request):
"""Creates a temporary directory for the user session."""
user_dir = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, ensured directory exists: {user_dir}")
except Exception as e:
print(f"Error in start_session creating directory '{user_dir}': {e}", file=sys.stderr)
def end_session(req: gr.Request):
"""Removes the temporary directory for the user session."""
user_dir = None
try:
session_hash = req.session_hash
if not session_hash:
print("Warning: No session_hash in end_session request, cannot clean up.")
return
user_dir = os.path.join(TMP_DIR, str(session_hash))
if os.path.exists(user_dir) and os.path.isdir(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory not found or not a directory: {user_dir}")
except Exception as e:
print(f"Error in end_session cleaning directory '{user_dir}': {e}", file=sys.stderr)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a serializable dictionary."""
print("[pack_state] Packing state to dictionary...")
try:
packed_data = {
'gaussian': {
**{k: v for k, v in gs.init_params.items()},
'_xyz': gs._xyz.detach().cpu().numpy(),
'_features_dc': gs._features_dc.detach().cpu().numpy(),
'_scaling': gs._scaling.detach().cpu().numpy(),
'_rotation': gs._rotation.detach().cpu().numpy(),
'_opacity': gs._opacity.detach().cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy(),
'faces': mesh.faces.detach().cpu().numpy(),
},
}
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
return packed_data
except Exception as e:
print(f"Error during pack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
"""Unpacks Gaussian and Mesh data from a dictionary."""
print("[unpack_state] Unpacking state from dictionary...")
try:
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
raise ValueError("Invalid state_dict structure passed to unpack_state.")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"[unpack_state] Using device: {device}")
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
gs = Gaussian(
aabb=gauss_data.get('aabb'),
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
mesh = edict(
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
)
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
return gs, mesh
except Exception as e:
print(f"Error during unpack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Gets a seed value, randomizing if requested."""
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
return int(new_seed)
# Decorator requires 'import spaces' at the top
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, Optional[str]]: # Return Optional[str] for video path
"""
Generates a 3D model (Gaussian and Mesh) from text and returns a
serializable state dictionary and potentially a video preview path.
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
"""
print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
user_dir = None
state_dict = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
# --- Generation Pipeline ---
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
outputs = pipeline.run(
prompt=prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": int(ss_sampling_steps),
"cfg_strength": float(ss_guidance_strength),
},
slat_sampler_params={
"steps": int(slat_sampling_steps),
"cfg_strength": float(slat_guidance_strength),
},
)
print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
# --- Create Serializable State Dictionary ---
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
except Exception as e:
print(f"❌ [text_to_3d - DEBUG MODE] Error during generation or packing: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Core generation failed: {e}")
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
video_path = None # Explicitly set path to None for this debug version
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
# --- Start Original Video Code Block (Commented Out) ---
# try:
# print("[text_to_3d] Rendering video preview...")
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
# video_path_tmp = os.path.join(user_dir, 'sample.mp4')
# imageio.mimsave(video_path_tmp, video, fps=15, quality=8)
# print(f"[text_to_3d] Video saved to: {video_path_tmp}")
# video_path = video_path_tmp
# except Exception as e:
# print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
# traceback.print_exc()
# video_path = None # Indicate video failure
# --- End Original Video Code Block ---
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[text_to_3d - DEBUG MODE] Cleared CUDA cache.")
print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
if state_dict is None:
print("Error: state_dict is None before return, generation likely failed.", file=sys.stderr)
raise gr.Error("State dictionary creation failed.")
return state_dict, video_path
# Decorator requires 'import spaces' at the top
@spaces.GPU(duration=120)
def extract_glb(
state_dict: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extracts a GLB file from the provided 3D model state dictionary.
"""
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
user_dir = None
glb_path = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_glb] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
gs, mesh = unpack_state(state_dict)
# --- Postprocessing and Export ---
print("[extract_glb] Converting to GLB...")
simplify_factor = float(mesh_simplify)
tex_size = int(texture_size)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[extract_glb] Exporting GLB to: {glb_path}")
glb.export(glb_path)
print("[extract_glb] GLB exported successfully.")
except Exception as e:
print(f"❌ [extract_glb] Error during GLB extraction: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract GLB: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_glb] Cleared CUDA cache.")
print("[extract_glb] Returning GLB path.")
if glb_path is None:
print("Error: glb_path is None before return, extraction likely failed.", file=sys.stderr)
raise gr.Error("GLB path generation failed.")
return glb_path, glb_path
# Decorator requires 'import spaces' at the top
@spaces.GPU
def extract_gaussian(
state_dict: dict,
req: gr.Request
) -> Tuple[str, str]:
"""
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
"""
print("[extract_gaussian] Received request.")
user_dir = None
gaussian_path = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_gaussian] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
gs, _ = unpack_state(state_dict)
# --- Export PLY ---
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
gs.save_ply(gaussian_path)
print("[extract_gaussian] PLY saved successfully.")
except Exception as e:
print(f"❌ [extract_gaussian] Error during Gaussian extraction: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_gaussian] Cleared CUDA cache.")
print("[extract_gaussian] Returning PLY path.")
if gaussian_path is None:
print("Error: gaussian_path is None before return, extraction likely failed.", file=sys.stderr)
raise gr.Error("Gaussian PLY path generation failed.")
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset preview.
* Adjust extraction settings if desired.
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
*(Note: Video preview is temporarily disabled for debugging)*
""")
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True):
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
""")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
# --- Event Handlers ---
print("Defining Gradio event handlers...")
demo.load(start_session) # Removed inputs/outputs kwargs, they are optional
demo.unload(end_session) # Removed incorrect inputs/outputs kwargs
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
api_name="get_seed"
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
api_name="text_to_3d"
).then(
lambda: (
gr.Button(interactive=True), gr.Button(interactive=True),
gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)
),
inputs=None,
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
api_name="extract_glb"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_glb],
)
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
api_name="extract_gaussian"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_gs],
)
model_output.clear(
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
inputs=None,
outputs=[download_glb, download_gs]
)
video_output.clear(
lambda: (
gr.Button(interactive=False), gr.Button(interactive=False),
gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)
),
inputs=None,
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
print("Gradio interface setup complete.")
# --- Launch the Gradio app ---
if __name__ == "__main__":
print("Loading Trellis pipeline...")
pipeline = None
pipeline_loaded = False
try:
# --- Load pipeline WITHOUT torch_dtype ---
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge"
# Removed: torch_dtype=torch.float16
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
print("✅ Trellis pipeline loaded successfully to GPU.")
else:
print("⚠️ WARNING: CUDA not available, running on CPU.")
print("✅ Trellis pipeline loaded successfully to CPU.")
pipeline_loaded = True
except Exception as e:
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
traceback.print_exc()
print("❌ Exiting due to pipeline load failure.")
sys.exit(1)
if pipeline_loaded:
print("Launching Gradio demo...")
demo.queue().launch(debug=True)
print("Gradio demo launched.")
else:
print("Gradio demo not launched.")