Spaces:
Sleeping
Sleeping
File size: 21,095 Bytes
696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 9df9f29 696b9f6 9df9f29 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 988efc8 696b9f6 988efc8 696b9f6 988efc8 63ce34f 1809fe4 988efc8 1809fe4 696b9f6 63ce34f 9df9f29 696b9f6 9df9f29 1809fe4 63ce34f 1809fe4 63ce34f 9df9f29 63ce34f 9df9f29 63ce34f 9df9f29 63ce34f 1809fe4 988efc8 9df9f29 63ce34f 9df9f29 63ce34f 9df9f29 63ce34f 9df9f29 63ce34f 696b9f6 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 9df9f29 1809fe4 9df9f29 1809fe4 696b9f6 9df9f29 696b9f6 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 9df9f29 696b9f6 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 9df9f29 1809fe4 696b9f6 63ce34f 1809fe4 9df9f29 1809fe4 63ce34f 988efc8 3447081 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 3447081 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 696b9f6 1809fe4 9df9f29 1809fe4 696b9f6 1809fe4 696b9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Version: 1.1.0 - API State Fix + DEBUG (Video Disabled - Corrected Baseline) (2025-05-04)
# Changes:
# - Based *EXACTLY* on user-provided Version 1.1.0 code.
# - TEMPORARY DEBUGGING STEP: Commented out video rendering/saving in `text_to_3d`
# and return None for video_path to isolate the "Session not found" error.
# - All other code (imports, functions, UI bindings, pipeline loading) is from Version 1.1.0.
# - Removed incorrect `torch_dtype` argument from pipeline loading.
# - Removed incorrect `inputs`/`outputs` arguments from `demo.unload()`.
import gradio as gr
# NOTE: Ensuring 'spaces' is imported if decorators are used (was missing in user provided snippet but needed)
# If @spaces.GPU decorators are not used, this import is not needed.
# Assuming they ARE used based on previous context:
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
# Using path relative to file as in original user provided code
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
# Ensure base directory exists
try:
os.makedirs(TMP_DIR, exist_ok=True)
print(f"Using temporary directory: {TMP_DIR}")
except OSError as e:
print(f"Warning: Could not create base temp directory {TMP_DIR}: {e}", file=sys.stderr)
TMP_DIR = '.' # Fallback
print(f"Warning: Falling back to use current directory for temp files: {os.path.abspath(TMP_DIR)}")
def start_session(req: gr.Request):
"""Creates a temporary directory for the user session."""
user_dir = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, ensured directory exists: {user_dir}")
except Exception as e:
print(f"Error in start_session creating directory '{user_dir}': {e}", file=sys.stderr)
def end_session(req: gr.Request):
"""Removes the temporary directory for the user session."""
user_dir = None
try:
session_hash = req.session_hash
if not session_hash:
print("Warning: No session_hash in end_session request, cannot clean up.")
return
user_dir = os.path.join(TMP_DIR, str(session_hash))
if os.path.exists(user_dir) and os.path.isdir(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory not found or not a directory: {user_dir}")
except Exception as e:
print(f"Error in end_session cleaning directory '{user_dir}': {e}", file=sys.stderr)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a serializable dictionary."""
print("[pack_state] Packing state to dictionary...")
try:
packed_data = {
'gaussian': {
**{k: v for k, v in gs.init_params.items()},
'_xyz': gs._xyz.detach().cpu().numpy(),
'_features_dc': gs._features_dc.detach().cpu().numpy(),
'_scaling': gs._scaling.detach().cpu().numpy(),
'_rotation': gs._rotation.detach().cpu().numpy(),
'_opacity': gs._opacity.detach().cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy(),
'faces': mesh.faces.detach().cpu().numpy(),
},
}
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
return packed_data
except Exception as e:
print(f"Error during pack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
"""Unpacks Gaussian and Mesh data from a dictionary."""
print("[unpack_state] Unpacking state from dictionary...")
try:
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
raise ValueError("Invalid state_dict structure passed to unpack_state.")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"[unpack_state] Using device: {device}")
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
gs = Gaussian(
aabb=gauss_data.get('aabb'),
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
mesh = edict(
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
)
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
return gs, mesh
except Exception as e:
print(f"Error during unpack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Gets a seed value, randomizing if requested."""
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
return int(new_seed)
# Decorator requires 'import spaces' at the top
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, Optional[str]]: # Return Optional[str] for video path
"""
Generates a 3D model (Gaussian and Mesh) from text and returns a
serializable state dictionary and potentially a video preview path.
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
"""
print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
user_dir = None
state_dict = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
# --- Generation Pipeline ---
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
outputs = pipeline.run(
prompt=prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": int(ss_sampling_steps),
"cfg_strength": float(ss_guidance_strength),
},
slat_sampler_params={
"steps": int(slat_sampling_steps),
"cfg_strength": float(slat_guidance_strength),
},
)
print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
# --- Create Serializable State Dictionary ---
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
except Exception as e:
print(f"β [text_to_3d - DEBUG MODE] Error during generation or packing: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Core generation failed: {e}")
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
video_path = None # Explicitly set path to None for this debug version
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
# --- Start Original Video Code Block (Commented Out) ---
# try:
# print("[text_to_3d] Rendering video preview...")
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
# video_path_tmp = os.path.join(user_dir, 'sample.mp4')
# imageio.mimsave(video_path_tmp, video, fps=15, quality=8)
# print(f"[text_to_3d] Video saved to: {video_path_tmp}")
# video_path = video_path_tmp
# except Exception as e:
# print(f"β [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
# traceback.print_exc()
# video_path = None # Indicate video failure
# --- End Original Video Code Block ---
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[text_to_3d - DEBUG MODE] Cleared CUDA cache.")
print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
if state_dict is None:
print("Error: state_dict is None before return, generation likely failed.", file=sys.stderr)
raise gr.Error("State dictionary creation failed.")
return state_dict, video_path
# Decorator requires 'import spaces' at the top
@spaces.GPU(duration=120)
def extract_glb(
state_dict: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extracts a GLB file from the provided 3D model state dictionary.
"""
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
user_dir = None
glb_path = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("β [extract_glb] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_glb] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
gs, mesh = unpack_state(state_dict)
# --- Postprocessing and Export ---
print("[extract_glb] Converting to GLB...")
simplify_factor = float(mesh_simplify)
tex_size = int(texture_size)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[extract_glb] Exporting GLB to: {glb_path}")
glb.export(glb_path)
print("[extract_glb] GLB exported successfully.")
except Exception as e:
print(f"β [extract_glb] Error during GLB extraction: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract GLB: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_glb] Cleared CUDA cache.")
print("[extract_glb] Returning GLB path.")
if glb_path is None:
print("Error: glb_path is None before return, extraction likely failed.", file=sys.stderr)
raise gr.Error("GLB path generation failed.")
return glb_path, glb_path
# Decorator requires 'import spaces' at the top
@spaces.GPU
def extract_gaussian(
state_dict: dict,
req: gr.Request
) -> Tuple[str, str]:
"""
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
"""
print("[extract_gaussian] Received request.")
user_dir = None
gaussian_path = None
try:
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("β [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"[extract_gaussian] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
gs, _ = unpack_state(state_dict)
# --- Export PLY ---
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
gs.save_ply(gaussian_path)
print("[extract_gaussian] PLY saved successfully.")
except Exception as e:
print(f"β [extract_gaussian] Error during Gaussian extraction: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_gaussian] Cleared CUDA cache.")
print("[extract_gaussian] Returning PLY path.")
if gaussian_path is None:
print("Error: gaussian_path is None before return, extraction likely failed.", file=sys.stderr)
raise gr.Error("Gaussian PLY path generation failed.")
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset preview.
* Adjust extraction settings if desired.
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
*(Note: Video preview is temporarily disabled for debugging)*
""")
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True):
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
""")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
# --- Event Handlers ---
print("Defining Gradio event handlers...")
demo.load(start_session) # Removed inputs/outputs kwargs, they are optional
demo.unload(end_session) # Removed incorrect inputs/outputs kwargs
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
api_name="get_seed"
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
api_name="text_to_3d"
).then(
lambda: (
gr.Button(interactive=True), gr.Button(interactive=True),
gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)
),
inputs=None,
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
api_name="extract_glb"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_glb],
)
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
api_name="extract_gaussian"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_gs],
)
model_output.clear(
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
inputs=None,
outputs=[download_glb, download_gs]
)
video_output.clear(
lambda: (
gr.Button(interactive=False), gr.Button(interactive=False),
gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)
),
inputs=None,
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
print("Gradio interface setup complete.")
# --- Launch the Gradio app ---
if __name__ == "__main__":
print("Loading Trellis pipeline...")
pipeline = None
pipeline_loaded = False
try:
# --- Load pipeline WITHOUT torch_dtype ---
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge"
# Removed: torch_dtype=torch.float16
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
print("β
Trellis pipeline loaded successfully to GPU.")
else:
print("β οΈ WARNING: CUDA not available, running on CPU.")
print("β
Trellis pipeline loaded successfully to CPU.")
pipeline_loaded = True
except Exception as e:
print(f"β Failed to load Trellis pipeline: {e}", file=sys.stderr)
traceback.print_exc()
print("β Exiting due to pipeline load failure.")
sys.exit(1)
if pipeline_loaded:
print("Launching Gradio demo...")
demo.queue().launch(debug=True)
print("Gradio demo launched.")
else:
print("Gradio demo not launched.") |