Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,149 Bytes
988efc8 8527388 988efc8 6e9010b 988efc8 27271e8 988efc8 0f79bfb 988efc8 bcd68a1 988efc8 bcd68a1 988efc8 6e9010b 988efc8 6e9010b 988efc8 bcd68a1 26217ae 83d10c9 4d2a9aa 83d10c9 bcd68a1 83d10c9 6e9010b 83d10c9 6e9010b 988efc8 6e9010b 988efc8 6e9010b 988efc8 6e9010b 988efc8 6e9010b 988efc8 6e9010b bcd68a1 26217ae 6e9010b 988efc8 bcd68a1 988efc8 6e9010b 988efc8 bcd68a1 26217ae 988efc8 bcd68a1 988efc8 31d67e5 6a68e82 9e071d4 6e9010b 6a68e82 988efc8 9896238 988efc8 47a7175 988efc8 31d67e5 988efc8 6e9010b 988efc8 0b3b481 6e9010b 0b3b481 988efc8 0b3b481 6e9010b 0b3b481 c17a234 653000f 988efc8 bcd68a1 988efc8 bcd68a1 df09626 36db39a df09626 36db39a 6e9010b 36db39a 6e9010b 36db39a df09626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import joblib # Added for saving/loading state
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[str, str, str]:
"""
Convert an text prompt to a 3D model.
Args:
prompt (str): The text prompt.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
str: Path to the saved state file.
str: Path to the generated video.
str: Path to the saved state file (for internal buffer).
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
outputs = pipeline.run(
prompt,
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
# Save state to file
state_file_path = os.path.join(user_dir, f'state_{seed}.joblib')
try:
joblib.dump(state, state_file_path)
print(f"[Trellis] State saved to {state_file_path}")
except Exception as e:
print(f"Error saving state to {state_file_path}: {e}")
# Decide how to handle error - maybe return None or raise?
# For now, let's allow it to proceed but log the error
state_file_path = None # Indicate failure
torch.cuda.empty_cache()
# Return state file path for API, video path for Video, and state path again for internal buffer
# Return None for path if saving failed
return state_file_path, video_path, state_file_path
@spaces.GPU(duration=90)
def extract_glb(
state_file_path: str, # Changed input from state: dict
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model state file.
Args:
state_file_path (str): Path to the file containing the state.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
str: The path to the extracted GLB file (for download button).
"""
if not state_file_path or not os.path.exists(state_file_path):
print(f"Error: State file path invalid or file not found: {state_file_path}")
# Return dummy paths or raise an error
return None, None
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
# Load state from file
try:
state = joblib.load(state_file_path)
print(f"[Trellis] State loaded from {state_file_path}")
except Exception as e:
print(f"Error loading state from {state_file_path}: {e}")
return None, None
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
# Optional: Clean up the state file after use
try:
os.remove(state_file_path)
print(f"[Trellis] Cleaned up state file: {state_file_path}")
except OSError as e:
print(f"Error removing state file {state_file_path}: {e.strerror}")
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
output_buf = gr.State()
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
# Change hidden JSON to hidden Textbox for the state file path
state_output_path_textbox = gr.Textbox(visible=False, label="State File Path Output")
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
# Output state path to hidden Textbox, video to Video, state path to internal buffer
outputs=[state_output_path_textbox, video_output, output_buf],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
# Input state path from internal buffer (assuming it holds the path now)
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
# This likely needs adjustment too if it relies on output_buf holding the state dict
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
pipeline.cuda()
demo.launch()
# --- API-only endpoint for server integration ---
# This exposes text_to_3d with gr.JSON() as the first output, so the state object is included in the API response.
# Not wired to the UI; use for API calls only.
api_text_to_3d = gr.Interface(
fn=lambda prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps: text_to_3d(
prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, gr.Request()
),
inputs=[
gr.Textbox(label="Text Prompt"),
gr.Number(label="Seed"),
gr.Number(label="SS Guidance Strength"),
gr.Number(label="SS Sampling Steps"),
gr.Number(label="SLAT Guidance Strength"),
gr.Number(label="SLAT Sampling Steps"),
],
# Note: This API is technically available but not used by the server.
# The server uses the main UI endpoint modified to return JSON first.
outputs=[gr.JSON(label="State Object"), gr.Textbox(label="Video Path")],
allow_flagging="never",
description="API endpoint for text_to_3d that returns the state object as JSON. Not for UI use.",
)
# --- API-only endpoint for GLB extraction ---
# Explicitly defines state input as JSON for server calls.
api_extract_glb = gr.Interface(
fn=lambda state_file_path, mesh_simplify, texture_size: extract_glb(
state_file_path, mesh_simplify, texture_size, gr.Request()
),
inputs=[
gr.Textbox(label="State File Path"), # Expect state file path as string
gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01),
gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
],
# Corresponds to the tuple returned by extract_glb: (glb_path, glb_path)
outputs=[
gr.Model3D(label="Extracted GLB Path Output"), # Maps to first glb_path
gr.File(label="Downloadable GLB File") # Maps to second glb_path
],
allow_flagging="never",
description="API endpoint for extract_glb that accepts state as JSON. Not for UI use.",
) |