Spaces:
Running
on
Zero
Running
on
Zero
revert back to without fast api
Browse files
app.py
CHANGED
|
@@ -17,22 +17,11 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
| 17 |
import traceback
|
| 18 |
import sys
|
| 19 |
|
| 20 |
-
# --- Import the FastAPI integration module ---
|
| 21 |
-
import trellis_fastAPI_integration
|
| 22 |
-
import logging
|
| 23 |
|
| 24 |
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 26 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 27 |
|
| 28 |
-
# --- Global Pipeline Variable ---
|
| 29 |
-
pipeline = None
|
| 30 |
-
|
| 31 |
-
# --- Logging Setup ---
|
| 32 |
-
logging.basicConfig(level=logging.INFO)
|
| 33 |
-
logger = logging.getLogger(__name__)
|
| 34 |
-
|
| 35 |
-
logger.info("Trellis App: Script starting.")
|
| 36 |
|
| 37 |
def start_session(req: gr.Request):
|
| 38 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
@@ -41,11 +30,7 @@ def start_session(req: gr.Request):
|
|
| 41 |
|
| 42 |
def end_session(req: gr.Request):
|
| 43 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 44 |
-
|
| 45 |
-
if os.path.exists(user_dir):
|
| 46 |
-
shutil.rmtree(user_dir)
|
| 47 |
-
except OSError as e:
|
| 48 |
-
logger.warning(f"Warning: Could not remove temp session dir {user_dir}: {e}")
|
| 49 |
|
| 50 |
|
| 51 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
@@ -65,7 +50,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
| 65 |
}
|
| 66 |
|
| 67 |
|
| 68 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
| 69 |
gs = Gaussian(
|
| 70 |
aabb=state['gaussian']['aabb'],
|
| 71 |
sh_degree=state['gaussian']['sh_degree'],
|
|
@@ -107,7 +92,6 @@ def text_to_3d(
|
|
| 107 |
) -> Tuple[dict, str]:
|
| 108 |
"""
|
| 109 |
Convert an text prompt to a 3D model.
|
| 110 |
-
|
| 111 |
Args:
|
| 112 |
prompt (str): The text prompt.
|
| 113 |
seed (int): The random seed.
|
|
@@ -115,22 +99,11 @@ def text_to_3d(
|
|
| 115 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 116 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 117 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 118 |
-
|
| 119 |
Returns:
|
| 120 |
dict: The information of the generated 3D model.
|
| 121 |
str: The path to the video of the 3D model.
|
| 122 |
"""
|
| 123 |
-
|
| 124 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
| 125 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
| 126 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
| 127 |
-
|
| 128 |
-
# Use the global pipeline initialized later
|
| 129 |
-
if pipeline is None:
|
| 130 |
-
logger.error("Gradio Error: Pipeline not initialized")
|
| 131 |
-
# Handle error appropriately for Gradio - maybe return None or raise gr.Error?
|
| 132 |
-
return {}, None
|
| 133 |
-
|
| 134 |
outputs = pipeline.run(
|
| 135 |
prompt,
|
| 136 |
seed=seed,
|
|
@@ -148,11 +121,7 @@ def text_to_3d(
|
|
| 148 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 149 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 150 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 151 |
-
|
| 152 |
-
imageio.mimsave(video_path, video, fps=15) # Now the directory should exist
|
| 153 |
-
except FileNotFoundError:
|
| 154 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before mimsave!", exc_info=True)
|
| 155 |
-
raise
|
| 156 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 157 |
torch.cuda.empty_cache()
|
| 158 |
return state, video_path
|
|
@@ -167,28 +136,18 @@ def extract_glb(
|
|
| 167 |
) -> Tuple[str, str]:
|
| 168 |
"""
|
| 169 |
Extract a GLB file from the 3D model.
|
| 170 |
-
|
| 171 |
Args:
|
| 172 |
state (dict): The state of the generated 3D model.
|
| 173 |
mesh_simplify (float): The mesh simplification factor.
|
| 174 |
texture_size (int): The texture resolution.
|
| 175 |
-
|
| 176 |
Returns:
|
| 177 |
str: The path to the extracted GLB file.
|
| 178 |
"""
|
| 179 |
-
|
| 180 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
| 181 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
| 182 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
| 183 |
-
|
| 184 |
gs, mesh = unpack_state(state)
|
| 185 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 186 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 187 |
-
|
| 188 |
-
glb.export(glb_path) # Now the directory should exist
|
| 189 |
-
except FileNotFoundError:
|
| 190 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before glb.export!", exc_info=True)
|
| 191 |
-
raise
|
| 192 |
torch.cuda.empty_cache()
|
| 193 |
return glb_path, glb_path
|
| 194 |
|
|
@@ -197,30 +156,19 @@ def extract_glb(
|
|
| 197 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 198 |
"""
|
| 199 |
Extract a Gaussian file from the 3D model.
|
| 200 |
-
|
| 201 |
Args:
|
| 202 |
state (dict): The state of the generated 3D model.
|
| 203 |
-
|
| 204 |
Returns:
|
| 205 |
str: The path to the extracted Gaussian file.
|
| 206 |
"""
|
| 207 |
-
|
| 208 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
| 209 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
| 210 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
| 211 |
-
|
| 212 |
gs, _ = unpack_state(state)
|
| 213 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 214 |
-
|
| 215 |
-
gs.save_ply(gaussian_path) # Now the directory should exist
|
| 216 |
-
except FileNotFoundError:
|
| 217 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before gs.save_ply!", exc_info=True)
|
| 218 |
-
raise
|
| 219 |
torch.cuda.empty_cache()
|
| 220 |
return gaussian_path, gaussian_path
|
| 221 |
|
| 222 |
|
| 223 |
-
# --- Gradio Blocks Definition ---
|
| 224 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 225 |
gr.Markdown("""
|
| 226 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
@@ -313,41 +261,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 313 |
)
|
| 314 |
|
| 315 |
|
| 316 |
-
# Launch the Gradio app
|
| 317 |
if __name__ == "__main__":
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
| 322 |
-
pipeline.cuda()
|
| 323 |
-
logger.info("Trellis App: Trellis Pipeline Initialized successfully.")
|
| 324 |
-
except Exception as e:
|
| 325 |
-
logger.error(f"Trellis App: FATAL ERROR initializing pipeline: {e}", exc_info=True)
|
| 326 |
-
pipeline = None # Ensure pipeline is None if initialization failed
|
| 327 |
-
# Optionally exit if pipeline is critical
|
| 328 |
-
# import sys
|
| 329 |
-
# sys.exit("Pipeline initialization failed.")
|
| 330 |
-
|
| 331 |
-
# Start the background API server using the integration module only if pipeline loaded
|
| 332 |
-
if pipeline:
|
| 333 |
-
logger.info("Trellis App: Attempting to start FastAPI server thread...")
|
| 334 |
-
try:
|
| 335 |
-
api_thread = trellis_fastAPI_integration.start_api_thread(pipeline)
|
| 336 |
-
if api_thread and api_thread.is_alive():
|
| 337 |
-
logger.info("Trellis App: FastAPI server thread started successfully (is_alive check passed).")
|
| 338 |
-
elif api_thread:
|
| 339 |
-
logger.warning("Trellis App: FastAPI server thread was created but is not alive shortly after starting.")
|
| 340 |
-
else:
|
| 341 |
-
logger.error("Trellis App: start_api_thread returned None, thread not created.")
|
| 342 |
-
except Exception as e:
|
| 343 |
-
logger.error(f"Trellis App: Error occurred during start_api_thread call: {e}", exc_info=True)
|
| 344 |
-
else:
|
| 345 |
-
logger.error("Trellis App: Skipping FastAPI server start because pipeline failed to initialize.")
|
| 346 |
-
|
| 347 |
-
# Launch the Gradio interface (blocking call)
|
| 348 |
-
logger.info("Trellis App: Launching Gradio Demo...")
|
| 349 |
-
try:
|
| 350 |
-
demo.launch()
|
| 351 |
-
logger.info("Trellis App: Gradio Demo launched.") # This might not be reached if launch blocks indefinitely
|
| 352 |
-
except Exception as e:
|
| 353 |
-
logger.error(f"Trellis App: Error launching Gradio demo: {e}", exc_info=True)
|
|
|
|
| 17 |
import traceback
|
| 18 |
import sys
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 23 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def start_session(req: gr.Request):
|
| 27 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
| 30 |
|
| 31 |
def end_session(req: gr.Request):
|
| 32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 33 |
+
shutil.rmtree(user_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
|
| 50 |
}
|
| 51 |
|
| 52 |
|
| 53 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 54 |
gs = Gaussian(
|
| 55 |
aabb=state['gaussian']['aabb'],
|
| 56 |
sh_degree=state['gaussian']['sh_degree'],
|
|
|
|
| 92 |
) -> Tuple[dict, str]:
|
| 93 |
"""
|
| 94 |
Convert an text prompt to a 3D model.
|
|
|
|
| 95 |
Args:
|
| 96 |
prompt (str): The text prompt.
|
| 97 |
seed (int): The random seed.
|
|
|
|
| 99 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 100 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 101 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
|
|
| 102 |
Returns:
|
| 103 |
dict: The information of the generated 3D model.
|
| 104 |
str: The path to the video of the 3D model.
|
| 105 |
"""
|
| 106 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
outputs = pipeline.run(
|
| 108 |
prompt,
|
| 109 |
seed=seed,
|
|
|
|
| 121 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 122 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 123 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 124 |
+
imageio.mimsave(video_path, video, fps=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 126 |
torch.cuda.empty_cache()
|
| 127 |
return state, video_path
|
|
|
|
| 136 |
) -> Tuple[str, str]:
|
| 137 |
"""
|
| 138 |
Extract a GLB file from the 3D model.
|
|
|
|
| 139 |
Args:
|
| 140 |
state (dict): The state of the generated 3D model.
|
| 141 |
mesh_simplify (float): The mesh simplification factor.
|
| 142 |
texture_size (int): The texture resolution.
|
|
|
|
| 143 |
Returns:
|
| 144 |
str: The path to the extracted GLB file.
|
| 145 |
"""
|
| 146 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
gs, mesh = unpack_state(state)
|
| 148 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 149 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 150 |
+
glb.export(glb_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
torch.cuda.empty_cache()
|
| 152 |
return glb_path, glb_path
|
| 153 |
|
|
|
|
| 156 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 157 |
"""
|
| 158 |
Extract a Gaussian file from the 3D model.
|
|
|
|
| 159 |
Args:
|
| 160 |
state (dict): The state of the generated 3D model.
|
|
|
|
| 161 |
Returns:
|
| 162 |
str: The path to the extracted Gaussian file.
|
| 163 |
"""
|
| 164 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
gs, _ = unpack_state(state)
|
| 166 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 167 |
+
gs.save_ply(gaussian_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
torch.cuda.empty_cache()
|
| 169 |
return gaussian_path, gaussian_path
|
| 170 |
|
| 171 |
|
|
|
|
| 172 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 173 |
gr.Markdown("""
|
| 174 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
|
| 264 |
+
# Launch the Gradio app
|
| 265 |
if __name__ == "__main__":
|
| 266 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
| 267 |
+
pipeline.cuda()
|
| 268 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|