Spaces:
Runtime error
Runtime error
File size: 3,301 Bytes
52ca3b2 d2a75bf 576a0b9 52ca3b2 576a0b9 52ca3b2 576a0b9 52ca3b2 576a0b9 fd839c5 52ca3b2 f9af6c0 fd839c5 f9af6c0 fd839c5 52ca3b2 8ca1c28 52ca3b2 576a0b9 52ca3b2 576a0b9 52ca3b2 7b16031 52ca3b2 fd839c5 7b16031 b1423ae 52ca3b2 784787d 52ca3b2 fd839c5 52ca3b2 dc7c88e 1dfe52b a852277 52ca3b2 8ca1c28 52ca3b2 576a0b9 784787d 576a0b9 7b16031 52ca3b2 dc7c88e 2ae49f4 52ca3b2 f8f3e74 52ca3b2 576a0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
MODEL_NAME = "openai/whisper-large-v2"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def transcribe(microphone, file_upload, task):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
textt = pipe(file, batch_size=BATCH_SIZE)["text"]
with open('outt.txt', 'a+') as sw:
sw.writelines(textt)
return [textt,"outt.txt"]
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url, task):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"]
with open('outtt.txt', 'a+') as sw:
sw.writelines(text)
return [text,"outtt.txt"]
demo = gr.Blocks()
output_2 = gr.File(label="Download")
output_3 = gr.File(label="Download")
description = """This application displays transcribed text for given audio input <img src="https://i.ibb.co/J5DscKw/GVP-Womens.jpg" width=100px>"""
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs=["text",output_2],
layout="horizontal",
theme="huggingface",
title="Speech to Text Converter using OpenAI Whisper Model",
description= description,
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["text",output_3],
layout="horizontal",
theme="huggingface",
title="Speech to Text Converter using OpenAI Whisper Model",
description=(
"Transcribe YouTube Videos to Text"
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)
|