File size: 3,301 Bytes
52ca3b2
 
 
 
 
 
d2a75bf
576a0b9
52ca3b2
 
576a0b9
52ca3b2
 
 
 
 
 
 
 
576a0b9
 
 
 
 
 
52ca3b2
 
 
 
 
 
 
 
 
 
 
 
576a0b9
 
fd839c5
52ca3b2
f9af6c0
fd839c5
f9af6c0
fd839c5
52ca3b2
 
 
 
 
 
 
 
 
 
8ca1c28
52ca3b2
576a0b9
52ca3b2
 
 
 
 
576a0b9
 
 
52ca3b2
7b16031
 
 
 
 
 
 
 
 
52ca3b2
 
fd839c5
7b16031
b1423ae
52ca3b2
 
 
 
 
784787d
52ca3b2
fd839c5
52ca3b2
dc7c88e
1dfe52b
a852277
52ca3b2
 
8ca1c28
52ca3b2
 
576a0b9
 
784787d
576a0b9
7b16031
52ca3b2
dc7c88e
2ae49f4
52ca3b2
f8f3e74
52ca3b2
 
 
 
 
 
 
576a0b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch

import gradio as gr
import pytube as pt
from transformers import pipeline

MODEL_NAME = "openai/whisper-large-v2"
BATCH_SIZE = 8

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]


def transcribe(microphone, file_upload, task):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]

    textt = pipe(file, batch_size=BATCH_SIZE)["text"]

    with open('outt.txt', 'a+') as sw:
        sw.writelines(textt)

    return [textt,"outt.txt"]


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str



def yt_transcribe(yt_url, task):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]

    text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"]


    with open('outtt.txt', 'a+') as sw:
        sw.writelines(text)

    return [text,"outtt.txt"]

    

    

demo = gr.Blocks()
output_2 = gr.File(label="Download")
output_3 = gr.File(label="Download")
description = """This application displays transcribed text for given audio input <img src="https://i.ibb.co/J5DscKw/GVP-Womens.jpg" width=100px>"""
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
        
    ],
    outputs=["text",output_2],
    layout="horizontal",
    theme="huggingface",
    title="Speech to Text Converter using OpenAI Whisper Model",
    description= description,
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
       
    ],
      outputs=["text",output_3],
    layout="horizontal",
    theme="huggingface",
    title="Speech to Text Converter using OpenAI Whisper Model",
    description=(
        "Transcribe YouTube Videos to Text"
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(enable_queue=True)