Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,12 @@ import torch
|
|
3 |
import gradio as gr
|
4 |
import pytube as pt
|
5 |
from transformers import pipeline
|
6 |
-
from huggingface_hub import model_info
|
7 |
|
8 |
-
MODEL_NAME = "openai/whisper-medium"
|
9 |
-
|
10 |
|
11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
12 |
pipe = pipeline(
|
13 |
task="automatic-speech-recognition",
|
14 |
model=MODEL_NAME,
|
@@ -16,9 +16,13 @@ pipe = pipeline(
|
|
16 |
device=device,
|
17 |
)
|
18 |
|
19 |
-
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
warn_output = ""
|
23 |
if (microphone is not None) and (file_upload is not None):
|
24 |
warn_output = (
|
@@ -31,7 +35,9 @@ def transcribe(microphone, file_upload):
|
|
31 |
|
32 |
file = microphone if microphone is not None else file_upload
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
return warn_output + text
|
37 |
|
@@ -45,13 +51,15 @@ def _return_yt_html_embed(yt_url):
|
|
45 |
return HTML_str
|
46 |
|
47 |
|
48 |
-
def yt_transcribe(yt_url):
|
49 |
yt = pt.YouTube(yt_url)
|
50 |
html_embed_str = _return_yt_html_embed(yt_url)
|
51 |
stream = yt.streams.filter(only_audio=True)[0]
|
52 |
stream.download(filename="audio.mp3")
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
return html_embed_str, text
|
57 |
|
@@ -63,26 +71,34 @@ mf_transcribe = gr.Interface(
|
|
63 |
inputs=[
|
64 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
65 |
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
|
|
66 |
],
|
67 |
outputs="text",
|
68 |
layout="horizontal",
|
69 |
theme="huggingface",
|
70 |
-
title="
|
71 |
description=(
|
72 |
-
"Transcribe long-form microphone or audio inputs with the click of a button!"
|
|
|
|
|
73 |
),
|
74 |
allow_flagging="never",
|
75 |
)
|
76 |
|
77 |
yt_transcribe = gr.Interface(
|
78 |
fn=yt_transcribe,
|
79 |
-
inputs=[
|
|
|
|
|
|
|
80 |
outputs=["html", "text"],
|
81 |
layout="horizontal",
|
82 |
theme="huggingface",
|
83 |
-
title="
|
84 |
description=(
|
85 |
-
"Transcribe long-form YouTube videos with the click of a button! "
|
|
|
|
|
86 |
),
|
87 |
allow_flagging="never",
|
88 |
)
|
@@ -90,4 +106,4 @@ yt_transcribe = gr.Interface(
|
|
90 |
with demo:
|
91 |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
92 |
|
93 |
-
demo.launch(enable_queue=True)
|
|
|
3 |
import gradio as gr
|
4 |
import pytube as pt
|
5 |
from transformers import pipeline
|
|
|
6 |
|
7 |
+
MODEL_NAME = "openai/whisper-medium"
|
8 |
+
BATCH_SIZE = 8
|
9 |
|
10 |
device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
pipe = pipeline(
|
13 |
task="automatic-speech-recognition",
|
14 |
model=MODEL_NAME,
|
|
|
16 |
device=device,
|
17 |
)
|
18 |
|
|
|
19 |
|
20 |
+
all_special_ids = pipe.tokenizer.all_special_ids
|
21 |
+
transcribe_token_id = all_special_ids[-5]
|
22 |
+
translate_token_id = all_special_ids[-6]
|
23 |
+
|
24 |
+
|
25 |
+
def transcribe(microphone, file_upload, task):
|
26 |
warn_output = ""
|
27 |
if (microphone is not None) and (file_upload is not None):
|
28 |
warn_output = (
|
|
|
35 |
|
36 |
file = microphone if microphone is not None else file_upload
|
37 |
|
38 |
+
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
39 |
+
|
40 |
+
text = pipe(file, batch_size=BATCH_SIZE)["text"]
|
41 |
|
42 |
return warn_output + text
|
43 |
|
|
|
51 |
return HTML_str
|
52 |
|
53 |
|
54 |
+
def yt_transcribe(yt_url, task):
|
55 |
yt = pt.YouTube(yt_url)
|
56 |
html_embed_str = _return_yt_html_embed(yt_url)
|
57 |
stream = yt.streams.filter(only_audio=True)[0]
|
58 |
stream.download(filename="audio.mp3")
|
59 |
|
60 |
+
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
61 |
+
|
62 |
+
text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"]
|
63 |
|
64 |
return html_embed_str, text
|
65 |
|
|
|
71 |
inputs=[
|
72 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
73 |
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
74 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
75 |
],
|
76 |
outputs="text",
|
77 |
layout="horizontal",
|
78 |
theme="huggingface",
|
79 |
+
title="Whisper Large V2: Transcribe Audio",
|
80 |
description=(
|
81 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
82 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
83 |
+
" of arbitrary length."
|
84 |
),
|
85 |
allow_flagging="never",
|
86 |
)
|
87 |
|
88 |
yt_transcribe = gr.Interface(
|
89 |
fn=yt_transcribe,
|
90 |
+
inputs=[
|
91 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
92 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
93 |
+
],
|
94 |
outputs=["html", "text"],
|
95 |
layout="horizontal",
|
96 |
theme="huggingface",
|
97 |
+
title="Whisper Large V2: Transcribe YouTube",
|
98 |
description=(
|
99 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
100 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
101 |
+
" arbitrary length."
|
102 |
),
|
103 |
allow_flagging="never",
|
104 |
)
|
|
|
106 |
with demo:
|
107 |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
108 |
|
109 |
+
demo.launch(enable_queue=True)
|