sbert-embedding / app.py
Adib-vali's picture
add project files
acedc04
raw
history blame contribute delete
759 Bytes
from fastapi import FastAPI
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
from typing import List
# Initialize the model
model = SentenceTransformer("PartAI/Tooka-SBERT")
# Create the FastAPI app
app = FastAPI()
# Pydantic model for input data
class TextInput(BaseModel):
sentences: List[str]
@app.get('/')
def index():
return {'message': 'Sentence embedding API.'}
# Endpoint to get embeddings
@app.post("/get_embeddings")
async def get_embeddings(input_data: TextInput):
# Get embeddings for the input sentences
embeddings = model.encode(input_data.sentences)
return {"embeddings": embeddings.tolist()}
# To run the app, save this code to a file, and then run `uvicorn filename:app --reload`