Spaces:
Running
Running
add project files
Browse files- Dockerfile +16 -0
- README.md +3 -3
- app.py +27 -0
- requirements.txt +3 -0
- test.py +18 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Sbert Embedding
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
|
|
1 |
---
|
2 |
title: Sbert Embedding
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: pink
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
# Initialize the model
|
7 |
+
model = SentenceTransformer("PartAI/Tooka-SBERT")
|
8 |
+
|
9 |
+
# Create the FastAPI app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Pydantic model for input data
|
13 |
+
class TextInput(BaseModel):
|
14 |
+
sentences: List[str]
|
15 |
+
|
16 |
+
@app.get('/')
|
17 |
+
def index():
|
18 |
+
return {'message': 'Sentence embedding API.'}
|
19 |
+
|
20 |
+
# Endpoint to get embeddings
|
21 |
+
@app.post("/get_embeddings")
|
22 |
+
async def get_embeddings(input_data: TextInput):
|
23 |
+
# Get embeddings for the input sentences
|
24 |
+
embeddings = model.encode(input_data.sentences)
|
25 |
+
return {"embeddings": embeddings.tolist()}
|
26 |
+
|
27 |
+
# To run the app, save this code to a file, and then run `uvicorn filename:app --reload`
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
sentence_transformers
|
test.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
|
4 |
+
url = "https://diginext-sbert-embedding.hf.space/get_embeddings"
|
5 |
+
|
6 |
+
payload = json.dumps({
|
7 |
+
"sentences": [
|
8 |
+
"همه چی خوبه؟"
|
9 |
+
]
|
10 |
+
})
|
11 |
+
headers = {
|
12 |
+
'accept': 'application/json',
|
13 |
+
'Content-Type': 'application/json'
|
14 |
+
}
|
15 |
+
|
16 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
17 |
+
|
18 |
+
print(response.text)
|