Spaces:
Running
Running
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
model_path = 'model' | |
model = tf.saved_model.load(model_path) | |
labels = ['butterfly', 'cats', 'cow', 'dogs', 'elephant', | |
'horse', 'monkey', 'sheep', 'spider', 'squirrel'] | |
def predict_image(image): | |
image_resized = image.resize((224, 224)) | |
image_array = np.array(image_resized).astype(np.float32) / 255.0 | |
image_array = np.expand_dims(image_array, axis=0) | |
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] | |
# Highest prediction | |
top_index = np.argmax(predictions.numpy(), axis=1)[0] | |
top_label = labels[top_index] | |
top_probability = predictions.numpy()[0][top_index] | |
return {top_label:top_probability} | |
# Example images | |
example_images = [ | |
["exp_img/cat.jpg"], | |
["exp_img/cow.jpg"], | |
["exp_img/elephant.jpg"], | |
["exp_img/sheep.jpg"], | |
["exp_img/spider.jpg"], | |
["exp_img/squirrel.jpg"] | |
] | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=1, label="Prediction"), | |
examples=example_images, | |
title="Animals Classifier", | |
description="Upload an image of an animal, and the model will predict it.\n\n**Disclaimer:** This model is trained only on specific animal classes (butterfly, cats, cow, dogs, elephant, horse, monkey, sheep, spider, squirrel) and may not accurately predict animals outside these classes.", | |
allow_flagging="never" | |
) | |
interface.launch(share=True) | |