import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = 'model' model = tf.saved_model.load(model_path) labels = ['butterfly', 'cats', 'cow', 'dogs', 'elephant', 'horse', 'monkey', 'sheep', 'spider', 'squirrel'] def predict_image(image): image_resized = image.resize((224, 224)) image_array = np.array(image_resized).astype(np.float32) / 255.0 image_array = np.expand_dims(image_array, axis=0) predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] # Highest prediction top_index = np.argmax(predictions.numpy(), axis=1)[0] top_label = labels[top_index] top_probability = predictions.numpy()[0][top_index] return {top_label:top_probability} # Example images example_images = [ ["exp_img/cat.jpg"], ["exp_img/cow.jpg"], ["exp_img/elephant.jpg"], ["exp_img/sheep.jpg"], ["exp_img/spider.jpg"], ["exp_img/squirrel.jpg"] ] # Gradio Interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=1, label="Prediction"), examples=example_images, title="Animals Classifier", description="Upload an image of an animal, and the model will predict it.\n\n**Disclaimer:** This model is trained only on specific animal classes (butterfly, cats, cow, dogs, elephant, horse, monkey, sheep, spider, squirrel) and may not accurately predict animals outside these classes.", allow_flagging="never" ) interface.launch(share=True)