Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import torch | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
from label_studio_ml.model import LabelStudioMLBase | |
from lxml import etree | |
from uuid import uuid4 | |
from PIL import Image | |
class Model(LabelStudioMLBase): | |
image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int") | |
model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int") | |
def __init__(self, **kwargs): | |
# don't forget to call base class constructor | |
super(Model, self).__init__(**kwargs) | |
# you can preinitialize variables with keys needed to extract info from tasks and annotations and form predictions | |
self.model = model | |
self.tokenizer = image_processor | |
self.id2label = model.config.id2label | |
def predict(self, tasks, **kwargs): | |
""" This is where inference happens: model returns | |
the list of predictions based on input list of tasks | |
""" | |
predictions = [] | |
for task in tasks: | |
image_path = task["data"]["image"] | |
image = Image(image_path) | |
original_width, original_height = image.size | |
with torch.no_grad(): | |
inputs = image_processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] | |
result_list = [] | |
for score, label, box in zip(results['scores'], results['labels'], scores['boxes']): | |
label_id = str(uuid4())[:4] | |
x, y, x2, y2 = tuple(box) | |
result_list.append( | |
{ | |
'id': id | |
'original_width': original_width, | |
'original_height': original_height, | |
'from_name': "label", | |
'to_name': "image", | |
'type': 'labels', | |
'score': score, # per-region score, visible in the editor | |
'value': { | |
'x': x, | |
'y': y, | |
'width': x2-x, | |
'height': y2-y, | |
'rotation': 0 | |
'labels': [self.id2label[label]] | |
} | |
} | |
) | |
predictions.append({ | |
'score': results['scores'].mean(), # prediction overall score, visible in the data manager columns | |
'model_version': 'diegokauer/conditional-detr-coe-int', # all predictions will be differentiated by model version | |
'result': result_list | |
}) | |
return predictions |