File size: 2,952 Bytes
6307f85
26c4598
c0d1e9d
6307f85
26c4598
6307f85
26c4598
c0d1e9d
 
26c4598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d1e9d
 
 
 
9d86353
c0d1e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c4598
c0d1e9d
 
 
 
 
 
 
6307f85
c0d1e9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import logging
import torch

from transformers import AutoImageProcessor, AutoModelForObjectDetection
from label_studio_ml.model import LabelStudioMLBase
from lxml import etree
from uuid import uuid4
from PIL import Image


class Model(LabelStudioMLBase):

    image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
    model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")

    def __init__(self, **kwargs):
        # don't forget to call base class constructor
        super(Model, self).__init__(**kwargs)
    
        # you can preinitialize variables with keys needed to extract info from tasks and annotations and form predictions
        self.model = model
        self.tokenizer = image_processor
        self.id2label = model.config.id2label

    def predict(self, tasks, **kwargs):
        """ This is where inference happens: model returns 
            the list of predictions based on input list of tasks 
        """
        predictions = []
        for task in tasks:


            image_path = task["data"]["image"]
            image = Image(image_path)
            original_width, original_height = image.size
            with torch.no_grad():
                
                inputs = image_processor(images=image, return_tensors="pt")
                outputs = model(**inputs)
                target_sizes = torch.tensor([image.size[::-1]])
                results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]

            result_list = []
            for score, label, box in zip(results['scores'], results['labels'], scores['boxes']):
                label_id = str(uuid4())[:4]
                x, y, x2, y2 = tuple(box)
                result_list.append(
                    {
                        'id': id
                        'original_width': original_width,
                        'original_height': original_height,
                        'from_name': "label",
                        'to_name': "image",
                        'type': 'labels',
                        'score': score,  # per-region score, visible in the editor 
                        'value': {
                            'x': x,
                            'y': y,
                            'width': x2-x,
                            'height': y2-y,
                            'rotation': 0
                            'labels': [self.id2label[label]]
                        } 
                    }
                )
        
            
            predictions.append({
                'score': results['scores'].mean(),  # prediction overall score, visible in the data manager columns
                'model_version': 'diegokauer/conditional-detr-coe-int',  # all predictions will be differentiated by model version
                'result': result_list
            })
        return predictions