Update app.py
Browse files
app.py
CHANGED
@@ -1,222 +1,196 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from facenet_pytorch import MTCNN, InceptionResnetV1
|
5 |
-
import cv2
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
from
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
model
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
with gr.Row():
|
197 |
-
output_video = gr.Video(label="ποΈ Processed Video")
|
198 |
-
|
199 |
-
def update_confidence(prediction, confidence):
|
200 |
-
color = "#4CAF50" if prediction == "real" else "#FF5722"
|
201 |
-
return f"""
|
202 |
-
<div id="output-container">
|
203 |
-
<div id="confidence-label">Confidence: {confidence:.2%}</div>
|
204 |
-
<div id="confidence-bar">
|
205 |
-
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
|
206 |
-
</div>
|
207 |
-
</div>
|
208 |
-
"""
|
209 |
-
|
210 |
-
def process_video(video):
|
211 |
-
prediction, confidence, summary, _, frames = predict_video(video)
|
212 |
-
processed_video = np.stack(frames, axis=0)
|
213 |
-
confidence_html = update_confidence(prediction, confidence)
|
214 |
-
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary, output_video: processed_video}
|
215 |
-
|
216 |
-
submit_btn.click(
|
217 |
-
process_video,
|
218 |
-
inputs=[input_video],
|
219 |
-
outputs=[output_label, confidence_output, summary_plot, output_video]
|
220 |
-
)
|
221 |
-
|
222 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import warnings
|
9 |
+
from typing import Tuple, Dict
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import io
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
# Device configuration
|
16 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
17 |
+
|
18 |
+
# Load models
|
19 |
+
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
|
20 |
+
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
|
21 |
+
|
22 |
+
checkpoint = torch.load("df_model.pth", map_location=torch.device('cpu'))
|
23 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
24 |
+
model.to(DEVICE)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
def predict_frame(frame: np.ndarray) -> Tuple[str, Dict[str, float]]:
|
28 |
+
"""Predict whether the input frame contains a real or fake face"""
|
29 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
30 |
+
frame_pil = Image.fromarray(frame)
|
31 |
+
|
32 |
+
face = mtcnn(frame_pil)
|
33 |
+
if face is None:
|
34 |
+
return None, None # No face detected
|
35 |
+
|
36 |
+
# Preprocess the face
|
37 |
+
face = F.interpolate(face.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
|
38 |
+
face = face.to(DEVICE, dtype=torch.float32) / 255.0
|
39 |
+
|
40 |
+
# Predict
|
41 |
+
with torch.no_grad():
|
42 |
+
output = torch.sigmoid(model(face).squeeze(0))
|
43 |
+
fake_confidence = output.item()
|
44 |
+
real_confidence = 1 - fake_confidence
|
45 |
+
prediction = "real" if real_confidence > fake_confidence else "fake"
|
46 |
+
|
47 |
+
confidences = {
|
48 |
+
'real': real_confidence,
|
49 |
+
'fake': fake_confidence
|
50 |
+
}
|
51 |
+
|
52 |
+
return prediction, confidences
|
53 |
+
|
54 |
+
def predict_video(input_video: str) -> Tuple[str, float, np.ndarray]:
|
55 |
+
cap = cv2.VideoCapture(input_video)
|
56 |
+
|
57 |
+
predictions = []
|
58 |
+
confidences_real = []
|
59 |
+
confidences_fake = []
|
60 |
+
frame_count = 0
|
61 |
+
skip_frames = 5 # Analyze every 5th frame for faster processing
|
62 |
+
|
63 |
+
while True:
|
64 |
+
ret, frame = cap.read()
|
65 |
+
if not ret:
|
66 |
+
break
|
67 |
+
frame_count += 1
|
68 |
+
if frame_count % skip_frames != 0:
|
69 |
+
continue
|
70 |
+
|
71 |
+
prediction, confidence = predict_frame(frame)
|
72 |
+
if prediction is None:
|
73 |
+
continue
|
74 |
+
|
75 |
+
predictions.append(prediction)
|
76 |
+
confidences_real.append(confidence['real'])
|
77 |
+
confidences_fake.append(confidence['fake'])
|
78 |
+
|
79 |
+
cap.release()
|
80 |
+
|
81 |
+
# Determine the final prediction based on the average confidence
|
82 |
+
avg_real_confidence = sum(confidences_real) / len(confidences_real)
|
83 |
+
avg_fake_confidence = sum(confidences_fake) / len(confidences_fake)
|
84 |
+
final_prediction = 'real' if avg_real_confidence > avg_fake_confidence else 'fake'
|
85 |
+
final_confidence = max(avg_real_confidence, avg_fake_confidence)
|
86 |
+
|
87 |
+
# Create a summary plot
|
88 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8))
|
89 |
+
|
90 |
+
# Confidence over time
|
91 |
+
ax1.plot(confidences_real, label='Real', color='green')
|
92 |
+
ax1.plot(confidences_fake, label='Fake', color='red')
|
93 |
+
ax1.set_title('Confidence Scores Over Time')
|
94 |
+
ax1.set_xlabel('Frame')
|
95 |
+
ax1.set_ylabel('Confidence')
|
96 |
+
ax1.legend()
|
97 |
+
ax1.grid(True)
|
98 |
+
|
99 |
+
# Prediction distribution
|
100 |
+
labels, counts = np.unique(predictions, return_counts=True)
|
101 |
+
ax2.bar(labels, counts, color=['green', 'red'])
|
102 |
+
ax2.set_title('Distribution of Predictions')
|
103 |
+
ax2.set_xlabel('Prediction')
|
104 |
+
ax2.set_ylabel('Count')
|
105 |
+
|
106 |
+
plt.tight_layout()
|
107 |
+
|
108 |
+
# Save the plot as an image
|
109 |
+
buf = io.BytesIO()
|
110 |
+
plt.savefig(buf, format='png')
|
111 |
+
buf.seek(0)
|
112 |
+
summary_plot = Image.open(buf)
|
113 |
+
|
114 |
+
return final_prediction, final_confidence, summary_plot
|
115 |
+
|
116 |
+
# Custom CSS for a more appealing interface
|
117 |
+
custom_css = """
|
118 |
+
.video-container {
|
119 |
+
max-width: 400px;
|
120 |
+
margin: 0 auto;
|
121 |
+
}
|
122 |
+
#output-container {
|
123 |
+
display: flex;
|
124 |
+
justify-content: center;
|
125 |
+
align-items: center;
|
126 |
+
flex-direction: column;
|
127 |
+
}
|
128 |
+
#confidence-label {
|
129 |
+
font-size: 24px;
|
130 |
+
font-weight: bold;
|
131 |
+
margin-bottom: 10px;
|
132 |
+
}
|
133 |
+
#confidence-bar {
|
134 |
+
width: 100%;
|
135 |
+
height: 30px;
|
136 |
+
background-color: #f0f0f0;
|
137 |
+
border-radius: 15px;
|
138 |
+
overflow: hidden;
|
139 |
+
}
|
140 |
+
#confidence-fill {
|
141 |
+
height: 100%;
|
142 |
+
background-color: #4CAF50;
|
143 |
+
transition: width 0.5s ease-in-out;
|
144 |
+
}
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Gradio Interface
|
148 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
149 |
+
gr.Markdown("# π΅οΈββοΈ DeepFake Video Detective π")
|
150 |
+
gr.Markdown("Upload a video to determine if it's real or a deepfake. Our AI will analyze it frame by frame!")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
input_video = gr.Video(label="πΉ Upload Your Video", elem_classes=["video-container"])
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
submit_btn = gr.Button("π Analyze Video", variant="primary")
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column():
|
161 |
+
output_label = gr.Label(label="π·οΈ Prediction")
|
162 |
+
confidence_output = gr.HTML(
|
163 |
+
"""
|
164 |
+
<div id="output-container">
|
165 |
+
<div id="confidence-label">Confidence: 0%</div>
|
166 |
+
<div id="confidence-bar">
|
167 |
+
<div id="confidence-fill" style="width: 0%;"></div>
|
168 |
+
</div>
|
169 |
+
</div>
|
170 |
+
"""
|
171 |
+
)
|
172 |
+
summary_plot = gr.Image(label="π Analysis Summary")
|
173 |
+
|
174 |
+
def update_confidence(prediction, confidence):
|
175 |
+
color = "#4CAF50" if prediction == "real" else "#FF5722"
|
176 |
+
return f"""
|
177 |
+
<div id="output-container">
|
178 |
+
<div id="confidence-label">Confidence: {confidence:.2%}</div>
|
179 |
+
<div id="confidence-bar">
|
180 |
+
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
|
181 |
+
</div>
|
182 |
+
</div>
|
183 |
+
"""
|
184 |
+
|
185 |
+
def process_video(video):
|
186 |
+
prediction, confidence, summary = predict_video(video)
|
187 |
+
confidence_html = update_confidence(prediction, confidence)
|
188 |
+
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary}
|
189 |
+
|
190 |
+
submit_btn.click(
|
191 |
+
process_video,
|
192 |
+
inputs=[input_video],
|
193 |
+
outputs=[output_label, confidence_output, summary_plot]
|
194 |
+
)
|
195 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
demo.launch()
|