Spaces:
Runtime error
Runtime error
File size: 8,345 Bytes
dcf713b 36e7224 dcf713b 06d38c8 dcf713b 7dfe38c 36e7224 7dfe38c dcf713b 36e7224 dcf713b 36e7224 dcf713b 7dfe38c dcf713b 7dfe38c dcf713b 36e7224 7dfe38c 36e7224 7dfe38c 4adfa9c fdbf283 4adfa9c fdbf283 4adfa9c 7dfe38c 9b97455 7dfe38c dcf713b 9b97455 dcf713b 9b97455 dcf713b 4adfa9c ae93796 dcf713b 9b97455 dcf713b 06d38c8 dcf713b 9b97455 dcf713b 06d38c8 dcf713b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import shutil
from urllib.parse import parse_qs, urlparse
import gradio as gr
import requests
import spaces
import torch
from diffusers import (
AutoencoderKL,
AutoPipelineForImage2Image,
StableDiffusionImg2ImgPipeline,
StableDiffusionXLImg2ImgPipeline,
)
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt,
)
from loguru import logger
from PIL import Image
from slugify import slugify
from tqdm import tqdm
from tqdm.contrib.concurrent import thread_map
SUPPORTED_MODELS = [
"https://civitai.com/models/4384/dreamshaper",
"https://civitai.com/models/44960/mpixel",
"https://civitai.com/models/92444/lelo-lego-lora-for-xl-and-sd15",
"https://civitai.com/models/120298/chinese-landscape-art",
"https://civitai.com/models/150986/blueprintify-sd-xl-10",
"https://civitai.com/models/257749/pony-diffusion-v6-xl",
]
DEFAULT_MODEL = "https://civitai.com/models/4384/dreamshaper"
model_url = os.environ.get("MODEL_URL", DEFAULT_MODEL)
gpu_duration = int(os.environ.get("GPU_DURATION", 60))
logger.debug(f"Loading model info for: {model_url}")
model_url_parsed = urlparse(model_url)
model_id = int(model_url_parsed.path.split("/")[2])
model_version_id = parse_qs(model_url_parsed.query).get("modelVersionId")
if model_version_id is not None:
model_version_id = int(model_version_id[0])
logger.debug(f"Model version id: {model_version_id}")
r = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
try:
r.raise_for_status()
except requests.HTTPError as e:
raise requests.HTTPError(
r.text.strip(), request=e.request, response=e.response
) from e
model = r.json()
logger.debug(f"Model info: {model}")
model_version = (
model["modelVersions"][0]
if model_version_id is None
else next(mv for mv in model["modelVersions"] if mv["id"] == model_version_id)
)
assert len(model_version["files"]) <= 2
assert len({file["type"] for file in model_version["files"]}) == len(
model_version["files"]
)
assert all(file["type"] in ["Model", "VAE"] for file in model_version["files"])
assert all(
file["metadata"]["format"] in ["SafeTensor"] for file in model_version["files"]
)
def download(file: str, url: str):
if os.path.exists(file):
return
r = requests.get(url, stream=True)
r.raise_for_status()
temp_file = f"/tmp/{file}"
with tqdm(
desc=file, total=int(r.headers["content-length"]), unit="B", unit_scale=True
) as pbar, open(temp_file, "wb") as f:
for chunk in r.iter_content(chunk_size=1024 * 1024):
f.write(chunk)
pbar.update(len(chunk))
shutil.move(temp_file, file)
model_name = model["name"]
def get_file_name(file_type):
return f"{slugify(model_name)}.{slugify(file_type)}.safetensors"
for _ in thread_map(
lambda file: download(get_file_name(file["type"]), file["downloadUrl"]),
model_version["files"],
):
pass
model_type = model["type"]
if model_type == "Checkpoint":
logger.debug(f"Loading pipeline for checkpoint")
pipe_args = {}
if os.path.exists(get_file_name("VAE")):
logger.debug(f"Loading VAE")
pipe_args["vae"] = AutoencoderKL.from_single_file(
get_file_name("VAE"),
torch_dtype=torch.float16,
use_safetensors=True,
)
base_model = model_version["baseModel"]
if base_model == "SD 1.5":
pipeline_class = StableDiffusionImg2ImgPipeline
elif base_model == "SDXL 1.0":
pipeline_class = StableDiffusionXLImg2ImgPipeline
pipe = download_from_original_stable_diffusion_ckpt(
checkpoint_path_or_dict=get_file_name("Model"),
from_safetensors=True,
pipeline_class=pipeline_class,
load_safety_checker=False,
**pipe_args,
)
elif model_type == "LORA":
logger.debug(f"Loading pipeline for LORA")
base_model = model_version["baseModel"]
if base_model == "SD 1.5":
pipe = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
safety_checker=None,
requires_safety_checker=False,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
elif base_model == "SDXL 1.0":
# Use AutoPipelineForImage2Image with the base model
# since LORA are trained on base
pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
else:
raise ValueError(f"Unsupported base model: {base_model}")
adapter_name = slugify(model_name)
pipe.load_lora_weights(get_file_name("Model"), adapter_name=adapter_name)
else:
raise ValueError(f"Unsupported model type: {model_type}")
pipe = pipe.to("cuda")
@logger.catch(reraise=True)
@spaces.GPU(duration=gpu_duration)
def infer(
prompt: str,
init_image: Image.Image,
negative_prompt: str | None,
strength: float,
num_inference_steps: int,
guidance_scale: float,
lora_weight: float,
progress=gr.Progress(track_tqdm=True),
):
logger.info(f"Starting image generation: {dict(prompt=prompt, image=init_image)}")
# Downscale the image
init_image.thumbnail((1024, 1024))
additional_args = {
k: v
for k, v in dict(
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).items()
if v
}
if lora_weight:
pipe.set_adapters(adapter_name, lora_weight)
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")
images = pipe(
prompt=prompt,
image=init_image,
negative_prompt=negative_prompt,
**additional_args,
).images
return images[0]
css = """
@media (max-width: 1280px) {
#images-container {
flex-direction: column;
}
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# Image-to-Image with Civitai Models")
gr.Markdown(f"## Model: [{model_name}]({model_url})")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row(elem_id="images-container"):
init_image = gr.Image(label="Initial image", type="pil")
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
)
lora_weight = gr.Slider(
label="LORA weight",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
visible=model_type == "LORA",
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=0,
maximum=100,
step=1,
value=0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=100.0,
step=0.1,
value=0.0,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
init_image,
negative_prompt,
strength,
num_inference_steps,
guidance_scale,
lora_weight,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()
|