File size: 8,345 Bytes
dcf713b
 
36e7224
dcf713b
06d38c8
dcf713b
 
 
7dfe38c
 
 
 
36e7224
7dfe38c
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e7224
 
 
 
 
 
 
 
 
 
dcf713b
 
 
 
 
 
 
 
 
 
 
 
36e7224
 
 
 
 
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfe38c
dcf713b
7dfe38c
 
dcf713b
36e7224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfe38c
 
 
36e7224
7dfe38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adfa9c
fdbf283
 
4adfa9c
fdbf283
4adfa9c
 
 
 
7dfe38c
 
 
9b97455
 
7dfe38c
 
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
9b97455
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b97455
 
 
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adfa9c
ae93796
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b97455
 
 
 
 
 
 
 
 
dcf713b
 
 
 
 
 
 
06d38c8
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b97455
dcf713b
 
 
06d38c8
dcf713b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import shutil
from urllib.parse import parse_qs, urlparse

import gradio as gr
import requests
import spaces
import torch
from diffusers import (
    AutoencoderKL,
    AutoPipelineForImage2Image,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionXLImg2ImgPipeline,
)
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
    download_from_original_stable_diffusion_ckpt,
)
from loguru import logger
from PIL import Image
from slugify import slugify
from tqdm import tqdm
from tqdm.contrib.concurrent import thread_map

SUPPORTED_MODELS = [
    "https://civitai.com/models/4384/dreamshaper",
    "https://civitai.com/models/44960/mpixel",
    "https://civitai.com/models/92444/lelo-lego-lora-for-xl-and-sd15",
    "https://civitai.com/models/120298/chinese-landscape-art",
    "https://civitai.com/models/150986/blueprintify-sd-xl-10",
    "https://civitai.com/models/257749/pony-diffusion-v6-xl",
]
DEFAULT_MODEL = "https://civitai.com/models/4384/dreamshaper"

model_url = os.environ.get("MODEL_URL", DEFAULT_MODEL)
gpu_duration = int(os.environ.get("GPU_DURATION", 60))


logger.debug(f"Loading model info for: {model_url}")

model_url_parsed = urlparse(model_url)

model_id = int(model_url_parsed.path.split("/")[2])

model_version_id = parse_qs(model_url_parsed.query).get("modelVersionId")
if model_version_id is not None:
    model_version_id = int(model_version_id[0])

    logger.debug(f"Model version id: {model_version_id}")

r = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
try:
    r.raise_for_status()
except requests.HTTPError as e:
    raise requests.HTTPError(
        r.text.strip(), request=e.request, response=e.response
    ) from e

model = r.json()

logger.debug(f"Model info: {model}")

model_version = (
    model["modelVersions"][0]
    if model_version_id is None
    else next(mv for mv in model["modelVersions"] if mv["id"] == model_version_id)
)

assert len(model_version["files"]) <= 2
assert len({file["type"] for file in model_version["files"]}) == len(
    model_version["files"]
)
assert all(file["type"] in ["Model", "VAE"] for file in model_version["files"])
assert all(
    file["metadata"]["format"] in ["SafeTensor"] for file in model_version["files"]
)


def download(file: str, url: str):
    if os.path.exists(file):
        return

    r = requests.get(url, stream=True)
    r.raise_for_status()

    temp_file = f"/tmp/{file}"
    with tqdm(
        desc=file, total=int(r.headers["content-length"]), unit="B", unit_scale=True
    ) as pbar, open(temp_file, "wb") as f:
        for chunk in r.iter_content(chunk_size=1024 * 1024):
            f.write(chunk)
            pbar.update(len(chunk))

    shutil.move(temp_file, file)


model_name = model["name"]


def get_file_name(file_type):
    return f"{slugify(model_name)}.{slugify(file_type)}.safetensors"


for _ in thread_map(
    lambda file: download(get_file_name(file["type"]), file["downloadUrl"]),
    model_version["files"],
):
    pass

model_type = model["type"]

if model_type == "Checkpoint":
    logger.debug(f"Loading pipeline for checkpoint")

    pipe_args = {}
    if os.path.exists(get_file_name("VAE")):
        logger.debug(f"Loading VAE")

        pipe_args["vae"] = AutoencoderKL.from_single_file(
            get_file_name("VAE"),
            torch_dtype=torch.float16,
            use_safetensors=True,
        )

    base_model = model_version["baseModel"]
    if base_model == "SD 1.5":
        pipeline_class = StableDiffusionImg2ImgPipeline
    elif base_model == "SDXL 1.0":
        pipeline_class = StableDiffusionXLImg2ImgPipeline

    pipe = download_from_original_stable_diffusion_ckpt(
        checkpoint_path_or_dict=get_file_name("Model"),
        from_safetensors=True,
        pipeline_class=pipeline_class,
        load_safety_checker=False,
        **pipe_args,
    )
elif model_type == "LORA":
    logger.debug(f"Loading pipeline for LORA")

    base_model = model_version["baseModel"]

    if base_model == "SD 1.5":
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
            safety_checker=None,
            requires_safety_checker=False,
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16",
        )
    elif base_model == "SDXL 1.0":
        # Use AutoPipelineForImage2Image with the base model
        # since LORA are trained on base
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16",
        )
    else:
        raise ValueError(f"Unsupported base model: {base_model}")

    adapter_name = slugify(model_name)
    pipe.load_lora_weights(get_file_name("Model"), adapter_name=adapter_name)
else:
    raise ValueError(f"Unsupported model type: {model_type}")

pipe = pipe.to("cuda")


@logger.catch(reraise=True)
@spaces.GPU(duration=gpu_duration)
def infer(
    prompt: str,
    init_image: Image.Image,
    negative_prompt: str | None,
    strength: float,
    num_inference_steps: int,
    guidance_scale: float,
    lora_weight: float,
    progress=gr.Progress(track_tqdm=True),
):
    logger.info(f"Starting image generation: {dict(prompt=prompt, image=init_image)}")

    # Downscale the image
    init_image.thumbnail((1024, 1024))

    additional_args = {
        k: v
        for k, v in dict(
            strength=strength,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
        ).items()
        if v
    }

    if lora_weight:
        pipe.set_adapters(adapter_name, lora_weight)

    logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")

    images = pipe(
        prompt=prompt,
        image=init_image,
        negative_prompt=negative_prompt,
        **additional_args,
    ).images
    return images[0]


css = """
@media (max-width: 1280px) {
  #images-container {
    flex-direction: column;
  }
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.Markdown("# Image-to-Image with Civitai Models")
        gr.Markdown(f"## Model: [{model_name}]({model_url})")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        with gr.Row(elem_id="images-container"):
            init_image = gr.Image(label="Initial image", type="pil")

            result = gr.Image(label="Result")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            with gr.Row():
                strength = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.0,
                )

                lora_weight = gr.Slider(
                    label="LORA weight",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.0,
                    visible=model_type == "LORA",
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=0,
                    maximum=100,
                    step=1,
                    value=0,
                )

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=100.0,
                    step=0.1,
                    value=0.0,
                )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            init_image,
            negative_prompt,
            strength,
            num_inference_steps,
            guidance_scale,
            lora_weight,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()