Spaces:
Runtime error
Runtime error
SDXL base models and model versions
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
-
from urllib.parse import urlparse
|
4 |
|
5 |
import gradio as gr
|
6 |
import requests
|
@@ -10,6 +10,7 @@ from diffusers import (
|
|
10 |
AutoencoderKL,
|
11 |
AutoPipelineForImage2Image,
|
12 |
StableDiffusionImg2ImgPipeline,
|
|
|
13 |
)
|
14 |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
15 |
download_from_original_stable_diffusion_ckpt,
|
@@ -36,7 +37,16 @@ gpu_duration = int(os.environ.get("GPU_DURATION", 60))
|
|
36 |
|
37 |
logger.debug(f"Loading model info for: {model_url}")
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
r = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
|
41 |
try:
|
42 |
r.raise_for_status()
|
@@ -49,7 +59,11 @@ model = r.json()
|
|
49 |
|
50 |
logger.debug(f"Model info: {model}")
|
51 |
|
52 |
-
model_version =
|
|
|
|
|
|
|
|
|
53 |
|
54 |
assert len(model_version["files"]) <= 2
|
55 |
assert len({file["type"] for file in model_version["files"]}) == len(
|
@@ -92,26 +106,31 @@ for _ in thread_map(
|
|
92 |
):
|
93 |
pass
|
94 |
|
95 |
-
|
96 |
-
pipe_args = {}
|
97 |
-
if os.path.exists(get_file_name("VAE")):
|
98 |
-
logger.debug(f"Loading VAE")
|
99 |
-
|
100 |
-
pipe_args["vae"] = AutoencoderKL.from_single_file(
|
101 |
-
get_file_name("VAE"),
|
102 |
-
torch_dtype=torch.float16,
|
103 |
-
use_safetensors=True,
|
104 |
-
)
|
105 |
-
|
106 |
model_type = model["type"]
|
107 |
|
108 |
if model_type == "Checkpoint":
|
109 |
logger.debug(f"Loading pipeline for checkpoint")
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
pipe = download_from_original_stable_diffusion_ckpt(
|
112 |
checkpoint_path_or_dict=get_file_name("Model"),
|
113 |
from_safetensors=True,
|
114 |
-
pipeline_class=
|
115 |
load_safety_checker=False,
|
116 |
**pipe_args,
|
117 |
)
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
+
from urllib.parse import parse_qs, urlparse
|
4 |
|
5 |
import gradio as gr
|
6 |
import requests
|
|
|
10 |
AutoencoderKL,
|
11 |
AutoPipelineForImage2Image,
|
12 |
StableDiffusionImg2ImgPipeline,
|
13 |
+
StableDiffusionXLImg2ImgPipeline,
|
14 |
)
|
15 |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
16 |
download_from_original_stable_diffusion_ckpt,
|
|
|
37 |
|
38 |
logger.debug(f"Loading model info for: {model_url}")
|
39 |
|
40 |
+
model_url_parsed = urlparse(model_url)
|
41 |
+
|
42 |
+
model_id = int(model_url_parsed.path.split("/")[2])
|
43 |
+
|
44 |
+
model_version_id = parse_qs(model_url_parsed.query).get("modelVersionId")
|
45 |
+
if model_version_id is not None:
|
46 |
+
model_version_id = int(model_version_id[0])
|
47 |
+
|
48 |
+
logger.debug(f"Model version id: {model_version_id}")
|
49 |
+
|
50 |
r = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
|
51 |
try:
|
52 |
r.raise_for_status()
|
|
|
59 |
|
60 |
logger.debug(f"Model info: {model}")
|
61 |
|
62 |
+
model_version = (
|
63 |
+
model["modelVersions"][0]
|
64 |
+
if model_version_id is None
|
65 |
+
else next(mv for mv in model["modelVersions"] if mv["id"] == model_version_id)
|
66 |
+
)
|
67 |
|
68 |
assert len(model_version["files"]) <= 2
|
69 |
assert len({file["type"] for file in model_version["files"]}) == len(
|
|
|
106 |
):
|
107 |
pass
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
model_type = model["type"]
|
110 |
|
111 |
if model_type == "Checkpoint":
|
112 |
logger.debug(f"Loading pipeline for checkpoint")
|
113 |
|
114 |
+
pipe_args = {}
|
115 |
+
if os.path.exists(get_file_name("VAE")):
|
116 |
+
logger.debug(f"Loading VAE")
|
117 |
+
|
118 |
+
pipe_args["vae"] = AutoencoderKL.from_single_file(
|
119 |
+
get_file_name("VAE"),
|
120 |
+
torch_dtype=torch.float16,
|
121 |
+
use_safetensors=True,
|
122 |
+
)
|
123 |
+
|
124 |
+
base_model = model_version["baseModel"]
|
125 |
+
if base_model == "SD 1.5":
|
126 |
+
pipeline_class = StableDiffusionImg2ImgPipeline
|
127 |
+
elif base_model == "SDXL 1.0":
|
128 |
+
pipeline_class = StableDiffusionXLImg2ImgPipeline
|
129 |
+
|
130 |
pipe = download_from_original_stable_diffusion_ckpt(
|
131 |
checkpoint_path_or_dict=get_file_name("Model"),
|
132 |
from_safetensors=True,
|
133 |
+
pipeline_class=pipeline_class,
|
134 |
load_safety_checker=False,
|
135 |
**pipe_args,
|
136 |
)
|