Spaces:
Running
Running
title: README | |
emoji: 🐨 | |
colorFrom: purple | |
colorTo: green | |
sdk: static | |
pinned: false | |
license: mit | |
<p align="center"> | |
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/banner_1.jpg"> | |
</p> | |
 | |
[](https://codecov.io/gh/DevoLearn/devolearn) | |
[](https://github.com/DevoLearn/devolearn/issues) | |
[](https://github.com/DevoLearn/devolearn/graphs/contributors) | |
[](https://github.com/DevoLearn/devolearn/commits/master) | |
[](https://openworm.slack.com/archives/CMVFU7Q4W) | |
[](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb) | |
## Contents | |
* [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks) | |
* [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo) | |
* [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan) | |
* [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo) | |
* [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn) | |
* [Links to datasets](https://github.com/DevoLearn/devolearn#links-to-datasets) | |
* [Contact us](https://github.com/DevoLearn/devolearn#authorsmaintainers) | |
### Installation | |
```python | |
pip install devolearn | |
``` | |
### Example notebooks | |
<p align="center"> | |
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/nodes_matrix_long_smooth.gif" width = "40%"> | |
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/3d_node_map.gif" width = "40%"> | |
</p> | |
* [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb) | |
### Segmenting the Cell Membrane in C. elegans embryo | |
<p align="center"> | |
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/pred_centroids.gif" width = "80%"> | |
</p> | |
* Importing the model | |
```python | |
from devolearn import cell_membrane_segmentor | |
segmentor = cell_membrane_segmentor() | |
``` | |
* Running the model on an image and viewing the prediction | |
```python | |
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg") | |
plt.imshow(seg_pred) | |
plt.show() | |
``` | |
* Running the model on a video and saving the predictions into a folder | |
```python | |
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds") | |
``` | |
* Finding the centroids of the segmented features | |
```python | |
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True) | |
plt.imshow(seg_pred) | |
plt.show() | |
``` | |
* Saving the centroids from each frame into a CSV | |
```python | |
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds") | |
df.to_csv("centroids.csv") | |
``` | |
### Segmenting the Cell Nucleus in C. elegans embryo | |
<p align="center"> | |
<img src = "https://huggingface.co/spaces/devoworm-group/README/blob/main/images/nucleus_segmentation.gif" width = "50%"> | |
</p> | |
* Importing the model | |
```python | |
from devolearn import cell_nucleus_segmentor | |
segmentor = cell_nucleus_segmentor() | |
``` | |
* Running the model on an image and viewing the prediction | |
```python | |
seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg") | |
plt.imshow(seg_pred) | |
plt.show() | |
``` | |
### Generating synthetic images of embryos with a Pre-trained GAN | |
<p align="center"> | |
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/generated_embryos_3.gif" width = "30%"> | |
</p> | |
* Importing the model | |
```python | |
from devolearn import Generator, embryo_generator_model | |
generator = embryo_generator_model() | |
``` | |
* Generating a picture and viewing it with [matplotlib](https://matplotlib.org/) | |
```python | |
gen_image = generator.generate() | |
plt.imshow(gen_image) | |
plt.show() | |
``` | |
* Generating n images and saving them into `foldername` with a custom size | |
```python | |
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500)) | |
``` | |
--- | |
### Predicting populations of cells within the C. elegans embryo | |
<p align="center"> | |
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/resnet_preds_with_input.gif" width = "60%"> | |
</p> | |
* Importing the population model for inferences | |
```python | |
from devolearn import lineage_population_model | |
``` | |
* Loading a model instance to be used to estimate lineage populations of embryos from videos/photos. | |
```python | |
model = lineage_population_model(device = "cpu") | |
``` | |
* Making a prediction from an image | |
```python | |
print(model.predict(image_path = "sample_data/images/embryo_sample.png")) | |
``` | |
* Making predictions from a video and saving the predictions into a CSV file | |
```python | |
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False) | |
``` | |
* Plotting the model's predictions from a video | |
```python | |
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False) | |
plot.show() | |
``` | |
## Links to Datasets | |
| **Model** | **Data source** | | |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | |
| Segmenting the cell membrane in C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) | | |
| Segmenting the nucleus in C. elegans embryo | [C. elegans Cell-Tracking-Challenge dataset](http://celltrackingchallenge.net/3d-datasets/) | |
| Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/) | |
## Authors/maintainers: | |
* [Mayukh Deb](https://twitter.com/mayukh091) | |
* [Ujjwal Singh](https://twitter.com/ujjjwalll) | |
* [Dr. Bradly Alicea](https://twitter.com/balicea1) | |
Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)! | |