Spaces:
Running
Running
Update SegCloth.py
Browse files- SegCloth.py +23 -12
SegCloth.py
CHANGED
@@ -10,29 +10,40 @@ def segment_clothing(img, clothes):
|
|
10 |
# Segment image
|
11 |
segments = segmenter(img)
|
12 |
|
|
|
|
|
|
|
13 |
# Create list of masks
|
14 |
mask_list = []
|
|
|
|
|
15 |
for s in segments:
|
|
|
16 |
if s['label'] in clothes:
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
-
if not mask_list:
|
20 |
-
return img # Return original image if no
|
21 |
|
22 |
# Initialize final mask with zeros
|
23 |
-
final_mask = np.zeros_like(mask_list[0], dtype=np.uint8)
|
24 |
|
25 |
-
# Combine masks into one
|
26 |
for mask in mask_list:
|
27 |
final_mask = np.maximum(final_mask, mask)
|
28 |
|
29 |
-
# Expand clothing
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
# Optional: Use contour filling to ensure all areas within contours are filled
|
38 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
10 |
# Segment image
|
11 |
segments = segmenter(img)
|
12 |
|
13 |
+
# Define clothing items to expand
|
14 |
+
EXPAND_CLOTHING = {"Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"}
|
15 |
+
|
16 |
# Create list of masks
|
17 |
mask_list = []
|
18 |
+
expand_mask_list = [] # Separate list for clothes that need expansion
|
19 |
+
|
20 |
for s in segments:
|
21 |
+
mask = np.array(s['mask'], dtype=np.uint8) # Convert mask to numpy array
|
22 |
if s['label'] in clothes:
|
23 |
+
if s['label'] in EXPAND_CLOTHING:
|
24 |
+
expand_mask_list.append(mask) # Store separately for expansion
|
25 |
+
else:
|
26 |
+
mask_list.append(mask) # Keep others as they are
|
27 |
|
28 |
+
if not mask_list and not expand_mask_list:
|
29 |
+
return img # Return original image if no relevant items found
|
30 |
|
31 |
# Initialize final mask with zeros
|
32 |
+
final_mask = np.zeros_like(mask_list[0] if mask_list else expand_mask_list[0], dtype=np.uint8)
|
33 |
|
34 |
+
# Combine normal masks into one
|
35 |
for mask in mask_list:
|
36 |
final_mask = np.maximum(final_mask, mask)
|
37 |
|
38 |
+
# Expand selected clothing masks using morphological dilation
|
39 |
+
for mask in expand_mask_list:
|
40 |
+
height, width = mask.shape
|
41 |
+
kernel_size = max(1, int(0.05 * min(height, width))) # 5% expansion
|
42 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
43 |
+
|
44 |
+
# Dilate mask and merge into final mask
|
45 |
+
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
|
46 |
+
final_mask = np.maximum(final_mask, dilated_mask)
|
47 |
|
48 |
# Optional: Use contour filling to ensure all areas within contours are filled
|
49 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|