Spaces:
Running
Running
Update SegCloth.py
Browse files- SegCloth.py +13 -11
SegCloth.py
CHANGED
@@ -6,7 +6,7 @@ import cv2 # OpenCV for better mask processing
|
|
6 |
# Initialize segmentation pipeline
|
7 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
8 |
|
9 |
-
def segment_clothing(img, clothes
|
10 |
# Segment image
|
11 |
segments = segmenter(img)
|
12 |
|
@@ -16,6 +16,9 @@ def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dr
|
|
16 |
if s['label'] in clothes:
|
17 |
mask_list.append(np.array(s['mask'], dtype=np.uint8)) # Convert to numpy array and ensure it's uint8
|
18 |
|
|
|
|
|
|
|
19 |
# Initialize final mask with zeros
|
20 |
final_mask = np.zeros_like(mask_list[0], dtype=np.uint8)
|
21 |
|
@@ -23,24 +26,22 @@ def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dr
|
|
23 |
for mask in mask_list:
|
24 |
final_mask = np.maximum(final_mask, mask)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
#
|
|
|
32 |
|
33 |
# Optional: Use contour filling to ensure all areas within contours are filled
|
34 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
35 |
cv2.drawContours(final_mask, contours, -1, (255), thickness=cv2.FILLED)
|
36 |
|
37 |
-
# Apply Gaussian blur to smooth edges and reduce noise
|
38 |
-
#final_mask = cv2.GaussianBlur(final_mask, (7, 7), 0)
|
39 |
-
|
40 |
# Convert mask to binary (0 or 255) if needed for alpha channel
|
41 |
_, final_mask = cv2.threshold(final_mask, 127, 255, cv2.THRESH_BINARY)
|
42 |
|
43 |
-
# Convert final mask from
|
44 |
final_mask = Image.fromarray(final_mask)
|
45 |
|
46 |
# Apply mask to original image (convert to RGBA first)
|
@@ -48,3 +49,4 @@ def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dr
|
|
48 |
img.putalpha(final_mask)
|
49 |
|
50 |
return img
|
|
|
|
6 |
# Initialize segmentation pipeline
|
7 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
8 |
|
9 |
+
def segment_clothing(img, clothes):
|
10 |
# Segment image
|
11 |
segments = segmenter(img)
|
12 |
|
|
|
16 |
if s['label'] in clothes:
|
17 |
mask_list.append(np.array(s['mask'], dtype=np.uint8)) # Convert to numpy array and ensure it's uint8
|
18 |
|
19 |
+
if not mask_list:
|
20 |
+
return img # Return original image if no clothes found
|
21 |
+
|
22 |
# Initialize final mask with zeros
|
23 |
final_mask = np.zeros_like(mask_list[0], dtype=np.uint8)
|
24 |
|
|
|
26 |
for mask in mask_list:
|
27 |
final_mask = np.maximum(final_mask, mask)
|
28 |
|
29 |
+
# Expand clothing boundaries using morphological dilation
|
30 |
+
height, width = final_mask.shape
|
31 |
+
kernel_size = max(1, int(0.05 * min(height, width))) # Ensure at least 1 pixel
|
32 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
33 |
+
|
34 |
+
# Dilate mask to expand clothing area
|
35 |
+
final_mask = cv2.dilate(final_mask, kernel, iterations=1)
|
36 |
|
37 |
# Optional: Use contour filling to ensure all areas within contours are filled
|
38 |
contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
39 |
cv2.drawContours(final_mask, contours, -1, (255), thickness=cv2.FILLED)
|
40 |
|
|
|
|
|
|
|
41 |
# Convert mask to binary (0 or 255) if needed for alpha channel
|
42 |
_, final_mask = cv2.threshold(final_mask, 127, 255, cv2.THRESH_BINARY)
|
43 |
|
44 |
+
# Convert final mask from numpy array to PIL image
|
45 |
final_mask = Image.fromarray(final_mask)
|
46 |
|
47 |
# Apply mask to original image (convert to RGBA first)
|
|
|
49 |
img.putalpha(final_mask)
|
50 |
|
51 |
return img
|
52 |
+
|