denis-kazakov's picture
Changed as required in the Audio course exercise
cb24fcf verified
raw
history blame
2.36 kB
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, VitsModel, VitsTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint
model = VitsModel.from_pretrained('facebook/mms-tts-rus').to(device)
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-rus')
target_dtype = np.int16
max_range = np.iinfo(target_dtype).max
def translate(audio):
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": 'russian'})
return outputs["text"]
def synthesise(text):
input_ids = tokenizer(text, return_tensors="pt")["input_ids"].to(device)
with torch.no_grad():
outputs = model(input_ids)
return outputs["waveform"].squeeze().cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()