denis-kazakov commited on
Commit
cb24fcf
·
verified ·
1 Parent(s): dbfdf1a

Changed as required in the Audio course exercise

Browse files
Files changed (1) hide show
  1. app.py +12 -20
app.py CHANGED
@@ -1,44 +1,36 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
-
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
-
42
  title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
+ from transformers import pipeline, VitsModel, VitsTokenizer
 
 
 
5
 
6
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
7
 
8
  # load speech translation checkpoint
9
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
10
 
11
+ # load text-to-speech checkpoint
12
+ model = VitsModel.from_pretrained('facebook/mms-tts-rus').to(device)
13
+ tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-rus')
 
 
 
 
 
14
 
15
+ target_dtype = np.int16
16
+ max_range = np.iinfo(target_dtype).max
17
 
18
  def translate(audio):
19
+ outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": 'russian'})
20
  return outputs["text"]
21
 
 
22
  def synthesise(text):
23
+ input_ids = tokenizer(text, return_tensors="pt")["input_ids"].to(device)
24
+ with torch.no_grad():
25
+ outputs = model(input_ids)
26
+ return outputs["waveform"].squeeze().cpu()
27
 
28
  def speech_to_speech_translation(audio):
29
  translated_text = translate(audio)
30
  synthesised_speech = synthesise(translated_text)
31
+ synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
32
  return 16000, synthesised_speech
33
 
 
34
  title = "Cascaded STST"
35
  description = """
36
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's