File size: 2,359 Bytes
d347764
 
 
cb24fcf
d347764
 
 
 
 
 
cb24fcf
 
 
d347764
cb24fcf
 
d347764
 
6297784
d347764
 
 
cb24fcf
 
 
 
d347764
 
 
 
cb24fcf
9ab46d4
d347764
f805e49
 
fee55e0
c6f1d54
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
7c3bb3f
f805e49
 
d347764
c737803
 
 
 
7c3bb3f
c737803
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, VitsModel, VitsTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint
model = VitsModel.from_pretrained('facebook/mms-tts-rus').to(device)
tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-rus')

target_dtype = np.int16
max_range = np.iinfo(target_dtype).max

def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": 'russian'})
    return outputs["text"]

def synthesise(text):
    input_ids = tokenizer(text, return_tensors="pt")["input_ids"].to(device)
    with torch.no_grad():
        outputs = model(input_ids)
    return outputs["waveform"].squeeze().cpu()

def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
    return 16000, synthesised_speech

title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()