File size: 4,459 Bytes
ec0c384
 
00b05e0
d0d6669
 
e76a04b
d0d6669
 
 
e76a04b
d0d6669
 
 
 
 
e76a04b
d0d6669
 
e76a04b
00b05e0
 
e76a04b
 
 
 
 
00b05e0
d0d6669
00b05e0
e76a04b
 
 
00b05e0
 
 
d0d6669
4948600
ec0c384
4948600
e76a04b
ec0c384
 
d0d6669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76a04b
 
 
d0d6669
 
 
 
 
 
 
 
e76a04b
 
 
d0d6669
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from huggingface_hub import list_models
from typing import List
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from PIL import Image
import json
import re
import logging
from datasets import load_dataset

# Logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables for Donut model, processor, and dataset
donut_model = None
donut_processor = None
dataset = None


def load_merit_dataset():
    global dataset
    if dataset is None:
        dataset = load_dataset("de-Rodrigo/merit", name="en-digital-seq", split="train")
    return dataset


def get_image_from_dataset(index):
    global dataset
    if dataset is None:
        dataset = load_merit_dataset()
    image_data = dataset[int(index)]["image"]
    return image_data


def get_collection_models(tag: str) -> List[str]:
    """Get a list of models from a specific Hugging Face collection."""
    models = list_models(author="de-Rodrigo")
    return [model.modelId for model in models if tag in model.tags]


def get_donut():
    global donut_model, donut_processor
    if donut_model is None or donut_processor is None:
        try:
            donut_model = VisionEncoderDecoderModel.from_pretrained(
                "de-Rodrigo/donut-merit"
            )
            donut_processor = DonutProcessor.from_pretrained("de-Rodrigo/donut-merit")
            if torch.cuda.is_available():
                donut_model = donut_model.to("cuda")
            logger.info("Donut model loaded successfully")
        except Exception as e:
            logger.error(f"Error loading Donut model: {str(e)}")
            raise
    return donut_model, donut_processor


def process_image_donut(model, processor, image):
    try:
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)

        pixel_values = processor(image, return_tensors="pt").pixel_values
        if torch.cuda.is_available():
            pixel_values = pixel_values.to("cuda")

        task_prompt = "<s_cord-v2>"
        decoder_input_ids = processor.tokenizer(
            task_prompt, add_special_tokens=False, return_tensors="pt"
        )["input_ids"]

        outputs = model.generate(
            pixel_values,
            decoder_input_ids=decoder_input_ids,
            max_length=model.decoder.config.max_position_embeddings,
            early_stopping=True,
            pad_token_id=processor.tokenizer.pad_token_id,
            eos_token_id=processor.tokenizer.eos_token_id,
            use_cache=True,
            num_beams=1,
            bad_words_ids=[[processor.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
        )

        sequence = processor.batch_decode(outputs.sequences)[0]
        sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
            processor.tokenizer.pad_token, ""
        )
        sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()

        result = processor.token2json(sequence)
        return json.dumps(result, indent=2)
    except Exception as e:
        logger.error(f"Error processing image with Donut: {str(e)}")
        return f"Error: {str(e)}"


def process_image(model_name, image=None, dataset_image_index=None):
    if dataset_image_index is not None:
        image = get_image_from_dataset(dataset_image_index)

    if model_name == "de-Rodrigo/donut-merit":
        model, processor = get_donut()
        result = process_image_donut(model, processor, image)
    else:
        # Here you should implement processing for other models
        result = f"Processing for model {model_name} not implemented"

    return image, result


if __name__ == "__main__":
    # Load the dataset
    load_merit_dataset()

    models = get_collection_models("saliency")
    models.append("de-Rodrigo/donut-merit")

    demo = gr.Interface(
        fn=process_image,
        inputs=[
            gr.Dropdown(choices=models, label="Select Model"),
            gr.Image(type="pil", label="Upload Image"),
            gr.Slider(
                minimum=0, maximum=len(dataset) - 1, step=1, label="Dataset Image Index"
            ),
        ],
        outputs=[gr.Image(label="Processed Image"), gr.Textbox(label="Result")],
        title="Document Understanding with Donut",
        description="Upload an image or select one from the dataset to process with the selected model.",
    )

    demo.launch()