Spaces:
Sleeping
Sleeping
Commit
·
00b05e0
1
Parent(s):
4948600
Upload Images
Browse files- app.py +51 -22
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,12 +1,48 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
3 |
# from transformers import AutoModel, AutoTokenizer
|
4 |
from huggingface_hub import list_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def get_collection_models(tag: str) -> List[str]:
|
7 |
"""Get a list of models from a specific Hugging Face collection."""
|
8 |
models = list_models(author="de-Rodrigo")
|
9 |
-
|
10 |
model_names = []
|
11 |
for model in models:
|
12 |
if tag in model.tags:
|
@@ -20,26 +56,19 @@ def load_model(model_name: str):
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
return model, tokenizer
|
22 |
|
23 |
-
# Example processing function
|
24 |
-
def process_input(text: str, model_name: str) -> str:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
# Create Gradio interface
|
31 |
-
def create_interface(tag: str):
|
32 |
-
iface = gr.Interface(
|
33 |
-
fn=process_input,
|
34 |
-
inputs=[
|
35 |
-
gr.Textbox(lines=2, placeholder="Enter some text", label="Input Text"),
|
36 |
-
gr.Dropdown(choices=get_collection_models(tag), label="Select Model")
|
37 |
-
],
|
38 |
-
outputs=gr.Textbox(label="Model Output"),
|
39 |
-
title="Hugging Face Model Selector from Collection")
|
40 |
-
return iface
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
iface.launch()
|
|
|
1 |
+
import io
|
2 |
+
import requests
|
3 |
import gradio as gr
|
4 |
# from transformers import AutoModel, AutoTokenizer
|
5 |
from huggingface_hub import list_models
|
6 |
+
from datasets import load_dataset
|
7 |
+
from typing import List
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
def get_image_names(dataset):
|
12 |
+
return [str(i) for i in range(len(dataset))]
|
13 |
+
|
14 |
+
def get_image_from_dataset(index):
|
15 |
+
image_data = dataset[int(index)]["image"]
|
16 |
+
return image_data
|
17 |
+
|
18 |
+
def process_image(image=None, dataset_image_index=None):
|
19 |
+
if dataset_image_index:
|
20 |
+
image = get_image_from_dataset(dataset_image_index)
|
21 |
+
|
22 |
+
return image
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def create_interface(tag, image_indices):
|
27 |
+
""" Create Gradio interface"""
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=process_image,
|
30 |
+
inputs=[
|
31 |
+
gr.Dropdown(choices=get_collection_models(tag), label="Select Model"),
|
32 |
+
gr.Image(type="pil", label="Upload Image"),
|
33 |
+
gr.Dropdown(choices=image_indices, label="Select one from MERIT Dataset test-set"),
|
34 |
+
],
|
35 |
+
outputs=gr.Image(label="Output Image"),
|
36 |
+
title="Saliency Visualization",
|
37 |
+
description="Upload your image or select one from the MERIT Dataset test-set."
|
38 |
+
)
|
39 |
+
return iface
|
40 |
+
|
41 |
|
42 |
def get_collection_models(tag: str) -> List[str]:
|
43 |
"""Get a list of models from a specific Hugging Face collection."""
|
44 |
models = list_models(author="de-Rodrigo")
|
45 |
+
|
46 |
model_names = []
|
47 |
for model in models:
|
48 |
if tag in model.tags:
|
|
|
56 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
57 |
return model, tokenizer
|
58 |
|
59 |
+
# # Example processing function
|
60 |
+
# def process_input(text: str, model_name: str) -> str:
|
61 |
+
# model, tokenizer = load_model(model_name)
|
62 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
63 |
+
# outputs = model(**inputs)
|
64 |
+
# return f"Processed output with {model_name}"
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
dataset_name = "de-Rodrigo/merit"
|
68 |
+
dataset = load_dataset(dataset_name, name="en-digital-seq", split="train", num_proc=8)
|
69 |
+
image_indices = get_image_names(dataset)
|
70 |
+
|
71 |
+
models_tag = "saliency-merit"
|
72 |
+
|
73 |
+
iface = create_interface(models_tag, image_indices)
|
74 |
iface.launch()
|
requirements.txt
CHANGED
@@ -4,3 +4,4 @@ huggingface_hub
|
|
4 |
torch
|
5 |
numpy
|
6 |
Pillow
|
|
|
|
4 |
torch
|
5 |
numpy
|
6 |
Pillow
|
7 |
+
datasets
|