File size: 6,714 Bytes
1dd7eb5
ec0c384
 
00b05e0
d0d6669
 
e76a04b
d0d6669
 
 
e76a04b
d163769
d0d6669
 
 
 
 
d163769
 
 
 
 
e76a04b
d0d6669
 
e76a04b
00b05e0
 
e76a04b
 
 
a62b0d6
 
 
e76a04b
00b05e0
d0d6669
00b05e0
e76a04b
 
 
00b05e0
 
 
d0d6669
4948600
ec0c384
4948600
e76a04b
ec0c384
 
1dd7eb5
d0d6669
 
 
 
 
 
 
 
1dd7eb5
 
d0d6669
 
 
 
 
 
1dd7eb5
d0d6669
 
 
 
 
1dd7eb5
d0d6669
 
 
 
1dd7eb5
d0d6669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd7eb5
a62b0d6
 
d0d6669
 
 
 
 
 
a62b0d6
d0d6669
 
 
 
 
a62b0d6
 
 
 
d0d6669
a62b0d6
e76a04b
a62b0d6
d0d6669
 
 
62028bb
d163769
62028bb
d163769
62028bb
d163769
 
 
 
62028bb
d163769
 
62028bb
d163769
 
 
 
 
 
62028bb
d163769
a62b0d6
d163769
 
 
 
a62b0d6
d163769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62028bb
d0d6669
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import spaces
import gradio as gr
from huggingface_hub import list_models
from typing import List
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from PIL import Image
import json
import re
import logging
from datasets import load_dataset
import os

# Logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Paths to the static image and GIF
README_IMAGE_PATH = os.path.join("figs", "saliencies-merit-dataset.png")
GIF_PATH = os.path.join("figs", "demo_samples.gif")

# Global variables for Donut model, processor, and dataset
donut_model = None
donut_processor = None
dataset = None


def load_merit_dataset():
    global dataset
    if dataset is None:
        dataset = load_dataset(
            "de-Rodrigo/merit", name="en-digital-seq", split="test", num_proc=8
        )
    return dataset


def get_image_from_dataset(index):
    global dataset
    if dataset is None:
        dataset = load_merit_dataset()
    image_data = dataset[int(index)]["image"]
    return image_data


def get_collection_models(tag: str) -> List[str]:
    """Get a list of models from a specific Hugging Face collection."""
    models = list_models(author="de-Rodrigo")
    return [model.modelId for model in models if tag in model.tags]


@spaces.GPU
def get_donut():
    global donut_model, donut_processor
    if donut_model is None or donut_processor is None:
        try:
            donut_model = VisionEncoderDecoderModel.from_pretrained(
                "de-Rodrigo/donut-merit"
            )
            donut_processor = DonutProcessor.from_pretrained("de-Rodrigo/donut-merit")
            donut_model = donut_model.to("cuda")
            logger.info("Donut model loaded successfully on GPU")
        except Exception as e:
            logger.error(f"Error loading Donut model: {str(e)}")
            raise
    return donut_model, donut_processor


@spaces.GPU
def process_image_donut(model, processor, image):
    try:
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)

        pixel_values = processor(image, return_tensors="pt").pixel_values.to("cuda")

        task_prompt = "<s_cord-v2>"
        decoder_input_ids = processor.tokenizer(
            task_prompt, add_special_tokens=False, return_tensors="pt"
        )["input_ids"].to("cuda")

        outputs = model.generate(
            pixel_values,
            decoder_input_ids=decoder_input_ids,
            max_length=model.decoder.config.max_position_embeddings,
            early_stopping=True,
            pad_token_id=processor.tokenizer.pad_token_id,
            eos_token_id=processor.tokenizer.eos_token_id,
            use_cache=True,
            num_beams=1,
            bad_words_ids=[[processor.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
        )

        sequence = processor.batch_decode(outputs.sequences)[0]
        sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
            processor.tokenizer.pad_token, ""
        )
        sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()

        result = processor.token2json(sequence)
        return json.dumps(result, indent=2)
    except Exception as e:
        logger.error(f"Error processing image with Donut: {str(e)}")
        return f"Error: {str(e)}"


@spaces.GPU
def process_image(model_name, image=None, dataset_image_index=None):
    if dataset_image_index is not None:
        image = get_image_from_dataset(dataset_image_index)

    if model_name == "de-Rodrigo/donut-merit":
        model, processor = get_donut()
        result = process_image_donut(model, processor, image)
    else:
        # Here you should implement processing for other models
        result = f"Processing for model {model_name} not implemented"

    return image, result


def update_image(dataset_image_index):
    return get_image_from_dataset(dataset_image_index)


if __name__ == "__main__":
    # Load the dataset
    load_merit_dataset()

    models = get_collection_models("saliency")
    models.append("de-Rodrigo/donut-merit")

    with gr.Blocks() as demo:
        gr.Markdown("# Saliency Maps with the MERIT Dataset πŸŽ’πŸ“ƒπŸ†")

        gr.Image(value=README_IMAGE_PATH, label="Example Document")

        with gr.Tab("Introduction"):
            gr.Markdown(
                """
            ## Welcome to Saliency Maps with the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit)

            This space demonstrates the capabilities of different Vision Language models 
            for document understanding tasks.

            ### Key Features:
            - Process images from the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) or upload your own image.
            - Use a fine-tuned version of the models availabe to extract grades from documents.
            - Visualize saliency maps to understand where the model is looking (WIP πŸ› οΈ).
            """
            )

            gr.Image(value=GIF_PATH, label="Document Understanding Process")

        with gr.Tab("Try It Yourself"):
            gr.Markdown(
                "Select a model and an image from the dataset, or upload your own image."
            )

            with gr.Row():
                with gr.Column():
                    model_dropdown = gr.Dropdown(choices=models, label="Select Model")
                    dataset_slider = gr.Slider(
                        minimum=0,
                        maximum=len(dataset) - 1,
                        step=1,
                        label="Dataset Image Index",
                    )
                    upload_image = gr.Image(
                        type="pil", label="Or Upload Your Own Image"
                    )

                preview_image = gr.Image(label="Selected/Uploaded Image")

            process_button = gr.Button("Process Image")

            with gr.Row():
                output_image = gr.Image(label="Processed Image")
                output_text = gr.Textbox(label="Result")

            # Update preview image when slider changes
            dataset_slider.change(
                fn=update_image, inputs=[dataset_slider], outputs=[preview_image]
            )

            # Update preview image when an image is uploaded
            upload_image.change(
                fn=lambda x: x, inputs=[upload_image], outputs=[preview_image]
            )

            # Process image when button is clicked
            process_button.click(
                fn=process_image,
                inputs=[model_dropdown, upload_image, dataset_slider],
                outputs=[output_image, output_text],
            )

    demo.launch()