|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torchvision import models, transforms |
|
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights |
|
from PIL import Image |
|
import mediapipe as mp |
|
from fer import FER |
|
|
|
|
|
|
|
|
|
SKIP_RATE = 5 |
|
|
|
|
|
|
|
|
|
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0} |
|
emotion_cache = {"text": "Initializing...", "counter": 0} |
|
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0} |
|
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0} |
|
|
|
|
|
|
|
|
|
mp_pose = mp.solutions.pose |
|
pose = mp_pose.Pose() |
|
mp_drawing = mp.solutions.drawing_utils |
|
|
|
mp_face_detection = mp.solutions.face_detection |
|
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5) |
|
|
|
object_detection_model = models.detection.fasterrcnn_resnet50_fpn( |
|
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT |
|
) |
|
object_detection_model.eval() |
|
obj_transform = transforms.Compose([transforms.ToTensor()]) |
|
|
|
emotion_detector = FER(mtcnn=True) |
|
|
|
|
|
|
|
|
|
def draw_posture_overlay(raw_frame, landmarks): |
|
|
|
for (x, y) in landmarks: |
|
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1) |
|
return raw_frame |
|
|
|
def draw_boxes_overlay(raw_frame, boxes, color): |
|
for (x1, y1, x2, y2) in boxes: |
|
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2) |
|
return raw_frame |
|
|
|
|
|
|
|
|
|
|
|
def compute_posture_overlay(image): |
|
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
h, w, _ = frame.shape |
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
pose_results = pose.process(frame_rgb) |
|
if pose_results.pose_landmarks: |
|
landmarks = [] |
|
for lm in pose_results.pose_landmarks.landmark: |
|
landmarks.append((int(lm.x * w), int(lm.y * h))) |
|
) |
|
text = "Posture detected" |
|
else: |
|
landmarks = [] |
|
text = "No posture detected" |
|
return landmarks, text |
|
|
|
def compute_emotion_overlay(image): |
|
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
emotions = emotion_detector.detect_emotions(frame_rgb) |
|
if emotions: |
|
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1]) |
|
text = f"{top_emotion} ({score:.2f})" |
|
else: |
|
text = "No face detected" |
|
return text |
|
|
|
def compute_objects_overlay(image): |
|
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
image_pil = Image.fromarray(frame_rgb) |
|
img_tensor = obj_transform(image_pil) |
|
with torch.no_grad(): |
|
detections = object_detection_model([img_tensor])[0] |
|
threshold = 0.8 |
|
boxes = [] |
|
for box, score in zip(detections["boxes"], detections["scores"]): |
|
if score > threshold: |
|
boxes.append(tuple(box.int().cpu().numpy())) |
|
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected" |
|
return boxes, text |
|
|
|
def compute_faces_overlay(image): |
|
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
h, w, _ = frame.shape |
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
face_results = face_detection.process(frame_rgb) |
|
boxes = [] |
|
if face_results.detections: |
|
for detection in face_results.detections: |
|
bbox = detection.location_data.relative_bounding_box |
|
x = int(bbox.xmin * w) |
|
y = int(bbox.ymin * h) |
|
box_w = int(bbox.width * w) |
|
box_h = int(bbox.height * h) |
|
boxes.append((x, y, x + box_w, y + box_h)) |
|
text = f"Detected {len(boxes)} face(s)" |
|
else: |
|
text = "No faces detected" |
|
return boxes, text |
|
|
|
|
|
|
|
|
|
|
|
def analyze_posture_current(image): |
|
global posture_cache |
|
posture_cache["counter"] += 1 |
|
current_frame = np.array(image) |
|
|
|
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None: |
|
landmarks, text = compute_posture_overlay(image) |
|
posture_cache["landmarks"] = landmarks |
|
posture_cache["text"] = text |
|
|
|
output = current_frame.copy() |
|
if posture_cache["landmarks"]: |
|
output = draw_posture_overlay(output, posture_cache["landmarks"]) |
|
return output, f"Posture Analysis: {posture_cache['text']}" |
|
|
|
def analyze_emotion_current(image): |
|
global emotion_cache |
|
emotion_cache["counter"] += 1 |
|
current_frame = np.array(image) |
|
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None: |
|
text = compute_emotion_overlay(image) |
|
emotion_cache["text"] = text |
|
|
|
return current_frame, f"Emotion Analysis: {emotion_cache['text']}" |
|
|
|
def analyze_objects_current(image): |
|
global objects_cache |
|
objects_cache["counter"] += 1 |
|
current_frame = np.array(image) |
|
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None: |
|
boxes, text = compute_objects_overlay(image) |
|
objects_cache["boxes"] = boxes |
|
objects_cache["text"] = text |
|
output = current_frame.copy() |
|
if objects_cache["boxes"]: |
|
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0)) |
|
return output, f"Object Detection: {objects_cache['text']}" |
|
|
|
def analyze_faces_current(image): |
|
global faces_cache |
|
faces_cache["counter"] += 1 |
|
current_frame = np.array(image) |
|
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None: |
|
boxes, text = compute_faces_overlay(image) |
|
faces_cache["boxes"] = boxes |
|
faces_cache["text"] = text |
|
output = current_frame.copy() |
|
if faces_cache["boxes"]: |
|
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255)) |
|
return output, f"Face Detection: {faces_cache['text']}" |
|
|
|
|
|
|
|
|
|
custom_css = """ |
|
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap'); |
|
body { |
|
background-color: #0e0e0e; |
|
color: #ffffff; |
|
font-family: 'Orbitron', sans-serif; |
|
margin: 0; |
|
padding: 0; |
|
} |
|
.gradio-container { |
|
background: linear-gradient(135deg, #1e1e2f, #3e3e55); |
|
border-radius: 10px; |
|
padding: 20px; |
|
max-width: 1200px; |
|
margin: auto; |
|
} |
|
.gradio-title { |
|
font-size: 2.5em; |
|
color: #ffffff; |
|
text-align: center; |
|
margin-bottom: 0.2em; |
|
} |
|
.gradio-description { |
|
font-size: 1.2em; |
|
text-align: center; |
|
margin-bottom: 1em; |
|
color: #ffffff; |
|
} |
|
""" |
|
|
|
|
|
|
|
|
|
posture_interface = gr.Interface( |
|
fn=analyze_posture_current, |
|
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"), |
|
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")], |
|
title="Posture Analysis", |
|
description="Detects your posture using MediaPipe.", |
|
live=True |
|
) |
|
|
|
emotion_interface = gr.Interface( |
|
fn=analyze_emotion_current, |
|
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"), |
|
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")], |
|
title="Emotion Analysis", |
|
description="Detects facial emotions using FER.", |
|
live=True |
|
) |
|
|
|
objects_interface = gr.Interface( |
|
fn=analyze_objects_current, |
|
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"), |
|
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")], |
|
title="Object Detection", |
|
description="Detects objects using a pretrained Faster R-CNN.", |
|
live=True |
|
) |
|
|
|
faces_interface = gr.Interface( |
|
fn=analyze_faces_current, |
|
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"), |
|
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")], |
|
title="Face Detection", |
|
description="Detects faces using MediaPipe.", |
|
live=True |
|
) |
|
|
|
|
|
|
|
|
|
tabbed_interface = gr.TabbedInterface( |
|
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface], |
|
tab_names=["Posture", "Emotion", "Objects", "Faces"] |
|
) |
|
|
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>") |
|
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>") |
|
tabbed_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|