|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torchvision import models, transforms |
|
from PIL import Image |
|
import mediapipe as mp |
|
from fer import FER |
|
|
|
|
|
|
|
|
|
|
|
|
|
mp_pose = mp.solutions.pose |
|
pose = mp_pose.Pose() |
|
mp_drawing = mp.solutions.drawing_utils |
|
|
|
|
|
mp_face_detection = mp.solutions.face_detection |
|
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5) |
|
|
|
|
|
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) |
|
object_detection_model.eval() |
|
obj_transform = transforms.Compose([transforms.ToTensor()]) |
|
|
|
|
|
emotion_detector = FER(mtcnn=True) |
|
|
|
|
|
|
|
|
|
|
|
def analyze_posture(frame_rgb, output_frame): |
|
"""Runs pose estimation and draws landmarks on the frame.""" |
|
pose_results = pose.process(frame_rgb) |
|
posture_text = "No posture detected" |
|
if pose_results.pose_landmarks: |
|
posture_text = "Posture detected" |
|
|
|
mp_drawing.draw_landmarks( |
|
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS, |
|
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2), |
|
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2) |
|
) |
|
return posture_text |
|
|
|
def analyze_emotion(frame): |
|
"""Detects emotion from faces using FER. Returns the dominant emotion.""" |
|
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
emotions = emotion_detector.detect_emotions(frame_rgb) |
|
if emotions: |
|
|
|
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1]) |
|
emotion_text = f"{top_emotion} ({score:.2f})" |
|
else: |
|
emotion_text = "No face detected for emotion analysis" |
|
return emotion_text |
|
|
|
def analyze_objects(frame_rgb, output_frame): |
|
"""Performs object detection and draws bounding boxes for detections above a threshold.""" |
|
image_pil = Image.fromarray(frame_rgb) |
|
img_tensor = obj_transform(image_pil) |
|
with torch.no_grad(): |
|
detections = object_detection_model([img_tensor])[0] |
|
|
|
threshold = 0.8 |
|
detected_boxes = detections["boxes"][detections["scores"] > threshold] |
|
for box in detected_boxes: |
|
box = box.int().cpu().numpy() |
|
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2) |
|
object_text = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected" |
|
return object_text |
|
|
|
def analyze_faces(frame_rgb, output_frame): |
|
"""Detects faces using MediaPipe and draws bounding boxes.""" |
|
face_results = face_detection.process(frame_rgb) |
|
face_text = "No faces detected" |
|
if face_results.detections: |
|
face_text = f"Detected {len(face_results.detections)} face(s)" |
|
h, w, _ = output_frame.shape |
|
for detection in face_results.detections: |
|
bbox = detection.location_data.relative_bounding_box |
|
x = int(bbox.xmin * w) |
|
y = int(bbox.ymin * h) |
|
box_w = int(bbox.width * w) |
|
box_h = int(bbox.height * h) |
|
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2) |
|
return face_text |
|
|
|
|
|
|
|
|
|
|
|
def analyze_webcam(frame): |
|
""" |
|
Runs posture analysis, facial emotion analysis, object detection, and face detection |
|
on the given webcam frame. Returns an annotated image and a textual summary. |
|
""" |
|
if frame is None: |
|
return None, "No frame provided." |
|
|
|
|
|
output_frame = frame.copy() |
|
|
|
|
|
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
posture_result = analyze_posture(frame_rgb, output_frame) |
|
emotion_result = analyze_emotion(frame) |
|
object_result = analyze_objects(frame_rgb, output_frame) |
|
face_result = analyze_faces(frame_rgb, output_frame) |
|
|
|
|
|
summary = ( |
|
f"Posture Analysis: {posture_result}\n" |
|
f"Emotion Analysis: {emotion_result}\n" |
|
f"Object Detection: {object_result}\n" |
|
f"Face Detection: {face_result}" |
|
) |
|
|
|
|
|
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30), |
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) |
|
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70), |
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) |
|
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110), |
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) |
|
|
|
return output_frame, summary |
|
|
|
|
|
|
|
|
|
|
|
|
|
interface = gr.Interface( |
|
fn=analyze_webcam, |
|
inputs=gr.Image(source="webcam", streaming=True, label="Webcam Feed"), |
|
outputs=[ |
|
gr.Image(type="numpy", label="Annotated Output"), |
|
gr.Textbox(label="Analysis Summary") |
|
], |
|
title="Real-Time Multi-Analysis App", |
|
description=( |
|
"This app performs real-time posture analysis, facial emotion detection, " |
|
"object detection, and face detection using your webcam." |
|
), |
|
live=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|