David Driscoll
fix emotion, output vector
473b2d5
raw
history blame
16.1 kB
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
from transformers import AutoFeatureExtractor, AutoModel
# -----------------------------
# Configuration
# -----------------------------
SKIP_RATE = 1 # For image processing, always run the analysis
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DESIRED_SIZE = (640, 480)
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "object_list_text": "", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose and Face Detection
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection using Faster R-CNN
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval().to(device)
obj_transform = transforms.Compose([transforms.ToTensor()])
# Initialize the FER emotion detector (using the FER package)
emotion_detector = FER(mtcnn=True)
# Retrieve object categories from model weights metadata
object_categories = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.meta["categories"]
# -----------------------------
# Facial Recognition Model (DINO-ViT)
# -----------------------------
facial_recognition_extractor = AutoFeatureExtractor.from_pretrained("facebook/dino-vitb16")
facial_recognition_model = AutoModel.from_pretrained("facebook/dino-vitb16")
facial_recognition_model.to(device)
facial_recognition_model.eval()
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
# Draw connector lines using MediaPipe's POSE_CONNECTIONS
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
if start_idx < len(landmarks) and end_idx < len(landmarks):
start_point = landmarks[start_idx]
end_point = landmarks[end_idx]
cv2.line(raw_frame, start_point, end_point, (50, 205, 50), 2)
# Draw landmark points in lime green (BGR: (50,205,50))
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
# Scale landmarks back to the original image size
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
# Use the FER package (exactly as in your provided code)
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb_small)
img_tensor = obj_transform(image_pil).to(device)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
object_list = []
for box, score, label in zip(detections["boxes"], detections["scores"], detections["labels"]):
if score > threshold:
boxes.append(tuple(box.int().cpu().numpy()))
label_idx = int(label)
label_name = object_categories[label_idx] if label_idx < len(object_categories) else "Unknown"
object_list.append(f"{label_name} ({score:.2f})")
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
object_list_text = " | ".join(object_list) if object_list else "None"
return boxes, text, object_list_text
def compute_faces_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * small_w)
y = int(bbox.ymin * small_h)
box_w = int(bbox.width * small_w)
box_h = int(bbox.height * small_h)
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
def compute_facial_recognition_vector(image):
"""
Detects a face using MediaPipe, crops it, and computes its embedding vector
using facebook/dino-vitb16. The raw vector is returned as a string.
"""
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
if face_results.detections:
detection = face_results.detections[0]
bbox = detection.location_data.relative_bounding_box
h, w, _ = frame_rgb_small.shape
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
face_crop = frame_rgb_small[y:y+box_h, x:x+box_w]
face_image = Image.fromarray(face_crop)
inputs = facial_recognition_extractor(face_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = facial_recognition_model(**inputs)
# Mean pooling of the last hidden state to obtain a vector representation
vector = outputs.last_hidden_state.mean(dim=1).squeeze()
vector_np = vector.cpu().numpy()
# Format vector as a string with limited decimal places
vector_str = np.array2string(vector_np, precision=2, separator=',')
return face_crop, vector_str
else:
return np.array(image), "No face detected"
# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"<div style='color: lime !important;'>Posture Analysis: {posture_cache['text']}</div>"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"<div style='color: lime !important;'>Emotion Analysis: {emotion_cache['text']}</div>"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text, object_list_text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
objects_cache["object_list_text"] = object_list_text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
combined_text = f"Object Detection: {objects_cache['text']}<br>Details: {objects_cache['object_list_text']}"
return output, f"<div style='color: lime !important;'>{combined_text}</div>"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"<div style='color: lime !important;'>Face Detection: {faces_cache['text']}</div>"
def analyze_facial_recognition(image):
# Compute and return the facial vector (and the cropped face)
face_crop, vector_str = compute_facial_recognition_vector(image)
return face_crop, f"<div style='color: lime !important;'>Facial Vector: {vector_str}</div>"
def analyze_all(image):
current_frame = np.array(image).copy()
# Posture Analysis
landmarks, posture_text = compute_posture_overlay(image)
if landmarks:
current_frame = draw_posture_overlay(current_frame, landmarks)
# Emotion Analysis
emotion_text = compute_emotion_overlay(image)
# Object Detection
boxes_obj, objects_text, object_list_text = compute_objects_overlay(image)
if boxes_obj:
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
# Face Detection
boxes_face, faces_text = compute_faces_overlay(image)
if boxes_face:
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
# Combined Analysis Text
combined_text = (
f"<b>Posture Analysis:</b> {posture_text}<br>"
f"<b>Emotion Analysis:</b> {emotion_text}<br>"
f"<b>Object Detection:</b> {objects_text}<br>"
f"<b>Detected Objects:</b> {object_list_text}<br>"
f"<b>Face Detection:</b> {faces_text}"
)
if object_list_text and object_list_text != "None":
description_text = f"Image Description: The scene features {object_list_text}."
else:
description_text = "Image Description: No prominent objects detected."
combined_text += f"<br><br><div style='border:1px solid lime; padding:10px; box-shadow: 0 0 10px lime;'><b>{description_text}</b></div>"
combined_text_html = f"<div style='color: lime !important;'>{combined_text}</div>"
return current_frame, combined_text_html
# -----------------------------
# Custom CSS (High-Tech Neon Theme)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
font-family: 'Orbitron', sans-serif;
color: #32CD32;
}
.gradio-container {
background: linear-gradient(135deg, #1a1a1a, #333333);
border: 2px solid #32CD32;
box-shadow: 0 0 15px #32CD32;
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title, .gradio-description, .tab-item, .tab-item * {
color: #32CD32 !important;
text-shadow: 0 0 10px #32CD32;
}
input, button, .output {
border: 1px solid #32CD32;
box-shadow: 0 0 8px #32CD32;
color: #32CD32;
}
"""
# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
title="Posture",
description="Detects your posture using MediaPipe with connector lines.",
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
title="Emotion",
description="Detects facial emotions using FER.",
live=False
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(label="Upload an Image for Object Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
title="Objects",
description="Detects objects using a pretrained Faster R-CNN.",
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(label="Upload an Image for Face Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
title="Faces",
description="Detects faces using MediaPipe.",
live=False
)
facial_recognition_interface = gr.Interface(
fn=analyze_facial_recognition,
inputs=gr.Image(label="Upload a Face Image for Facial Recognition"),
outputs=[gr.Image(type="numpy", label="Cropped Face"), gr.HTML(label="Facial Recognition")],
title="Facial Recognition",
description="Extracts and outputs the facial vector using facebook/dino-vitb16.",
live=False
)
all_interface = gr.Interface(
fn=analyze_all,
inputs=gr.Image(label="Upload an Image for All Inferences"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Combined Analysis")],
title="All Inferences",
description="Runs posture, emotion, object, and face detection all at once.",
live=False
)
tabbed_interface = gr.TabbedInterface(
interface_list=[
posture_interface,
emotion_interface,
objects_interface,
faces_interface,
facial_recognition_interface,
all_interface
],
tab_names=[
"Posture",
"Emotion",
"Objects",
"Faces",
"Facial Recognition",
"All Inferences"
]
)
# -----------------------------
# Wrap in a Blocks Layout and Launch
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title' style='color: #32CD32;'>Multi-Analysis Image App</h1>")
gr.Markdown("<p class='gradio-description' style='color: #32CD32;'>Upload an image to run high-tech analysis for posture, emotions, objects, faces, and facial embeddings.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()