File size: 6,343 Bytes
e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 4d52ef2 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 4d52ef2 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 4d52ef2 e5a1544 4d52ef2 e5a1544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
# Facial Emotion Detection using FER (this model will detect emotions from a face)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Define Analysis Functions
# -----------------------------
def analyze_posture(frame_rgb, output_frame):
"""Runs pose estimation and draws landmarks on the frame."""
pose_results = pose.process(frame_rgb)
posture_text = "No posture detected"
if pose_results.pose_landmarks:
posture_text = "Posture detected"
# Draw the pose landmarks on the output image
mp_drawing.draw_landmarks(
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
return posture_text
def analyze_emotion(frame):
"""Detects emotion from faces using FER. Returns the dominant emotion."""
# FER expects RGB images
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
# Use the first detected face and its top emotion
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
emotion_text = f"{top_emotion} ({score:.2f})"
else:
emotion_text = "No face detected for emotion analysis"
return emotion_text
def analyze_objects(frame_rgb, output_frame):
"""Performs object detection and draws bounding boxes for detections above a threshold."""
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
detected_boxes = detections["boxes"][detections["scores"] > threshold]
for box in detected_boxes:
box = box.int().cpu().numpy()
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
object_text = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
return object_text
def analyze_faces(frame_rgb, output_frame):
"""Detects faces using MediaPipe and draws bounding boxes."""
face_results = face_detection.process(frame_rgb)
face_text = "No faces detected"
if face_results.detections:
face_text = f"Detected {len(face_results.detections)} face(s)"
h, w, _ = output_frame.shape
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
return face_text
# -----------------------------
# Main Analysis Function
# -----------------------------
def analyze_webcam(video_path):
"""
Receives a video file (captured from the webcam), extracts one frame,
then runs posture analysis, facial emotion detection, object detection,
and face detection on that frame.
Returns an annotated image and a textual summary.
"""
# Open the video file (the webcam stream is saved as a temporary file)
cap = cv2.VideoCapture(video_path)
success, frame = cap.read()
cap.release()
if not success:
return None, "Could not read a frame from the video."
# Create a copy for drawing annotations
output_frame = frame.copy()
# Convert frame to RGB for some analyses
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Run analyses
posture_result = analyze_posture(frame_rgb, output_frame)
emotion_result = analyze_emotion(frame)
object_result = analyze_objects(frame_rgb, output_frame)
face_result = analyze_faces(frame_rgb, output_frame)
# Compose the result summary text
summary = (
f"Posture Analysis: {posture_result}\n"
f"Emotion Analysis: {emotion_result}\n"
f"Object Detection: {object_result}\n"
f"Face Detection: {face_result}"
)
# Optionally, overlay some summary text on the image
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
return output_frame, summary
# -----------------------------
# Gradio Interface Setup
# -----------------------------
# Note: In the current version of Gradio, the Video component does not accept a 'source' argument.
# Remove the 'source' parameter. Streaming is still enabled.
interface = gr.Interface(
fn=analyze_webcam,
inputs=gr.Video(streaming=True, label="Webcam Feed"),
outputs=[
gr.Image(type="numpy", label="Annotated Output"),
gr.Textbox(label="Analysis Summary")
],
title="Real-Time Multi-Analysis App",
description=(
"This app performs real-time posture analysis, facial emotion detection, "
"object detection, and face detection using your webcam."
),
live=True
)
if __name__ == "__main__":
interface.launch()
|