File size: 4,627 Bytes
ae3a47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#ํ•„์š” ํŒจํ‚ค์ง€ ์„ค์น˜
!pip install mxnet
!pip install gluonnlp==0.8.0
!pip install tqdm pandas
!pip install sentencepiece
!pip install transformers
!pip install torch
!pip install numpy==1.23.1

#KoBERT ๊นƒํ—ˆ๋ธŒ์—์„œ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
!pip install 'git+https://github.com/SKTBrain/KoBERT.git#egg=kobert_tokenizer&subdirectory=kobert_hf'

!pip install langchain==0.0.125 chromadb==0.3.14 pypdf==3.7.0 tiktoken==0.3.3
!pip install openai==0.28
!pip install gradio transformers torch opencv-python-headless

# import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import gluonnlp as nlp
import numpy as np
from tqdm import tqdm, tqdm_notebook
import pandas as pd

#  Hugging Face๋ฅผ ํ†ตํ•œ ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ € Import
from kobert_tokenizer import KoBERTTokenizer
from transformers import BertModel

from transformers import AdamW
from transformers.optimization import get_cosine_schedule_with_warmup

n_devices = torch.cuda.device_count()
print(n_devices)

for i in range(n_devices):
    print(torch.cuda.get_device_name(i))

if torch.cuda.is_available():
    device = torch.device("cuda")
    print('There are %d GPU(s) available.' % torch.cuda.device_count())
    print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
    device = torch.device("cpu")
    print('No GPU available, using the CPU instead.')


# Kobert_softmax
class BERTClassifier(nn.Module):
    def __init__(self,
                 bert,
                 hidden_size=768,
                 num_classes=6,
                 dr_rate=None,
                 params=None):
        super(BERTClassifier, self).__init__()
        self.bert = bert
        self.dr_rate = dr_rate
        self.softmax = nn.Softmax(dim=1)  # Softmax๋กœ ๋ณ€๊ฒฝ
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(in_features=hidden_size, out_features=512),
            nn.Linear(in_features=512, out_features=num_classes),
        )

        # ์ •๊ทœํ™” ๋ ˆ์ด์–ด ์ถ”๊ฐ€ (Layer Normalization)
        self.layer_norm = nn.LayerNorm(768)

        # ๋“œ๋กญ์•„์›ƒ
        self.dropout = nn.Dropout(p=dr_rate)

    def gen_attention_mask(self, token_ids, valid_length):
        attention_mask = torch.zeros_like(token_ids)
        for i, v in enumerate(valid_length):
            attention_mask[i][:v] = 1
        return attention_mask.float()

    def forward(self, token_ids, valid_length, segment_ids):
        attention_mask = self.gen_attention_mask(token_ids, valid_length)
        _, pooler = self.bert(input_ids=token_ids, token_type_ids=segment_ids.long(), attention_mask=attention_mask.float().to(token_ids.device))

        pooled_output = self.dropout(pooler)
        normalized_output = self.layer_norm(pooled_output)
        out = self.classifier(normalized_output)

        # LayerNorm ์ ์šฉ
        pooler = self.layer_norm(pooler)

        if self.dr_rate:
            pooler = self.dropout(pooler)

        logits = self.classifier(pooler)  # ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋กœ์ง“ ๊ฐ’ ๊ณ„์‚ฐ
        probabilities = self.softmax(logits)  # Softmax๋กœ ๊ฐ ํด๋ž˜์Šค์˜ ํ™•๋ฅ  ๊ณ„์‚ฐ
        return probabilities  # ๊ฐ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ํ™•๋ฅ  ๋ฐ˜ํ™˜

#์ •์˜ํ•œ ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
model = BERTClassifier(bertmodel,dr_rate=0.4).to(device)
#model = BERTClassifier(bertmodel,  dr_rate=0.5).to('cpu')

# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
    {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
    {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()
t_total = len(train_dataloader) * num_epochs
warmup_step = int(t_total * warmup_ratio)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_step, num_training_steps=t_total)
def calc_accuracy(X,Y):
    max_vals, max_indices = torch.max(X, 1)
    train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0]
    return train_acc
train_dataloader

model = torch.load('./model_weights_softmax(model).pth')
model.eval()

#gradio
!pip install --upgrade gradio
import numpy as np
import pandas as pd
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification, pipeline
import gradio as gr
import openai
from sklearn.metrics.pairwise import cosine_similarity
import ast