Spaces:
Sleeping
Sleeping
Create ready.py
Browse files
ready.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ํ์ ํจํค์ง ์ค์น
|
| 2 |
+
!pip install mxnet
|
| 3 |
+
!pip install gluonnlp==0.8.0
|
| 4 |
+
!pip install tqdm pandas
|
| 5 |
+
!pip install sentencepiece
|
| 6 |
+
!pip install transformers
|
| 7 |
+
!pip install torch
|
| 8 |
+
!pip install numpy==1.23.1
|
| 9 |
+
|
| 10 |
+
#KoBERT ๊นํ๋ธ์์ ๋ถ๋ฌ์ค๊ธฐ
|
| 11 |
+
!pip install 'git+https://github.com/SKTBrain/KoBERT.git#egg=kobert_tokenizer&subdirectory=kobert_hf'
|
| 12 |
+
|
| 13 |
+
!pip install langchain==0.0.125 chromadb==0.3.14 pypdf==3.7.0 tiktoken==0.3.3
|
| 14 |
+
!pip install openai==0.28
|
| 15 |
+
!pip install gradio transformers torch opencv-python-headless
|
| 16 |
+
|
| 17 |
+
# import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
import torch.optim as optim
|
| 21 |
+
from torch.utils.data import Dataset, DataLoader
|
| 22 |
+
import gluonnlp as nlp
|
| 23 |
+
import numpy as np
|
| 24 |
+
from tqdm import tqdm, tqdm_notebook
|
| 25 |
+
import pandas as pd
|
| 26 |
+
|
| 27 |
+
# Hugging Face๋ฅผ ํตํ ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ Import
|
| 28 |
+
from kobert_tokenizer import KoBERTTokenizer
|
| 29 |
+
from transformers import BertModel
|
| 30 |
+
|
| 31 |
+
from transformers import AdamW
|
| 32 |
+
from transformers.optimization import get_cosine_schedule_with_warmup
|
| 33 |
+
|
| 34 |
+
n_devices = torch.cuda.device_count()
|
| 35 |
+
print(n_devices)
|
| 36 |
+
|
| 37 |
+
for i in range(n_devices):
|
| 38 |
+
print(torch.cuda.get_device_name(i))
|
| 39 |
+
|
| 40 |
+
if torch.cuda.is_available():
|
| 41 |
+
device = torch.device("cuda")
|
| 42 |
+
print('There are %d GPU(s) available.' % torch.cuda.device_count())
|
| 43 |
+
print('We will use the GPU:', torch.cuda.get_device_name(0))
|
| 44 |
+
else:
|
| 45 |
+
device = torch.device("cpu")
|
| 46 |
+
print('No GPU available, using the CPU instead.')
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Kobert_softmax
|
| 50 |
+
class BERTClassifier(nn.Module):
|
| 51 |
+
def __init__(self,
|
| 52 |
+
bert,
|
| 53 |
+
hidden_size=768,
|
| 54 |
+
num_classes=6,
|
| 55 |
+
dr_rate=None,
|
| 56 |
+
params=None):
|
| 57 |
+
super(BERTClassifier, self).__init__()
|
| 58 |
+
self.bert = bert
|
| 59 |
+
self.dr_rate = dr_rate
|
| 60 |
+
self.softmax = nn.Softmax(dim=1) # Softmax๋ก ๋ณ๊ฒฝ
|
| 61 |
+
self.classifier = nn.Sequential(
|
| 62 |
+
nn.Dropout(p=0.5),
|
| 63 |
+
nn.Linear(in_features=hidden_size, out_features=512),
|
| 64 |
+
nn.Linear(in_features=512, out_features=num_classes),
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# ์ ๊ทํ ๋ ์ด์ด ์ถ๊ฐ (Layer Normalization)
|
| 68 |
+
self.layer_norm = nn.LayerNorm(768)
|
| 69 |
+
|
| 70 |
+
# ๋๋กญ์์
|
| 71 |
+
self.dropout = nn.Dropout(p=dr_rate)
|
| 72 |
+
|
| 73 |
+
def gen_attention_mask(self, token_ids, valid_length):
|
| 74 |
+
attention_mask = torch.zeros_like(token_ids)
|
| 75 |
+
for i, v in enumerate(valid_length):
|
| 76 |
+
attention_mask[i][:v] = 1
|
| 77 |
+
return attention_mask.float()
|
| 78 |
+
|
| 79 |
+
def forward(self, token_ids, valid_length, segment_ids):
|
| 80 |
+
attention_mask = self.gen_attention_mask(token_ids, valid_length)
|
| 81 |
+
_, pooler = self.bert(input_ids=token_ids, token_type_ids=segment_ids.long(), attention_mask=attention_mask.float().to(token_ids.device))
|
| 82 |
+
|
| 83 |
+
pooled_output = self.dropout(pooler)
|
| 84 |
+
normalized_output = self.layer_norm(pooled_output)
|
| 85 |
+
out = self.classifier(normalized_output)
|
| 86 |
+
|
| 87 |
+
# LayerNorm ์ ์ฉ
|
| 88 |
+
pooler = self.layer_norm(pooler)
|
| 89 |
+
|
| 90 |
+
if self.dr_rate:
|
| 91 |
+
pooler = self.dropout(pooler)
|
| 92 |
+
|
| 93 |
+
logits = self.classifier(pooler) # ๋ถ๋ฅ๋ฅผ ์ํ ๋ก์ง ๊ฐ ๊ณ์ฐ
|
| 94 |
+
probabilities = self.softmax(logits) # Softmax๋ก ๊ฐ ํด๋์ค์ ํ๋ฅ ๊ณ์ฐ
|
| 95 |
+
return probabilities # ๊ฐ ํด๋์ค์ ๋ํ ํ๋ฅ ๋ฐํ
|
| 96 |
+
|
| 97 |
+
#์ ์ํ ๋ชจ๋ธ ๋ถ๋ฌ์ค๊ธฐ
|
| 98 |
+
model = BERTClassifier(bertmodel,dr_rate=0.4).to(device)
|
| 99 |
+
#model = BERTClassifier(bertmodel, dr_rate=0.5).to('cpu')
|
| 100 |
+
|
| 101 |
+
# Prepare optimizer and schedule (linear warmup and decay)
|
| 102 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
| 103 |
+
optimizer_grouped_parameters = [
|
| 104 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
| 105 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
| 106 |
+
]
|
| 107 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
|
| 108 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 109 |
+
t_total = len(train_dataloader) * num_epochs
|
| 110 |
+
warmup_step = int(t_total * warmup_ratio)
|
| 111 |
+
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_step, num_training_steps=t_total)
|
| 112 |
+
def calc_accuracy(X,Y):
|
| 113 |
+
max_vals, max_indices = torch.max(X, 1)
|
| 114 |
+
train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0]
|
| 115 |
+
return train_acc
|
| 116 |
+
train_dataloader
|
| 117 |
+
|
| 118 |
+
model = torch.load('./model_weights_softmax(model).pth')
|
| 119 |
+
model.eval()
|
| 120 |
+
|
| 121 |
+
#gradio
|
| 122 |
+
!pip install --upgrade gradio
|
| 123 |
+
import numpy as np
|
| 124 |
+
import pandas as pd
|
| 125 |
+
import requests
|
| 126 |
+
from PIL import Image
|
| 127 |
+
import torch
|
| 128 |
+
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification, pipeline
|
| 129 |
+
import gradio as gr
|
| 130 |
+
import openai
|
| 131 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 132 |
+
import ast
|