Spaces:
Running
Running
Update ui.py
Browse files
ui.py
CHANGED
@@ -2,6 +2,13 @@ import gradio as gr
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
from sentiment import analyze_sentiment
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# 📌 生成簡單的信心度條狀圖
|
6 |
def plot_confidence(score):
|
7 |
fig, ax = plt.subplots(figsize=(4, 1)) # 調整圖表尺寸
|
@@ -15,21 +22,29 @@ def plot_confidence(score):
|
|
15 |
def create_ui():
|
16 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
17 |
gr.Markdown("# 🎯 多語言情緒分析 AI")
|
18 |
-
gr.Markdown("
|
19 |
-
|
20 |
text_input = gr.Textbox(lines=3, placeholder="請輸入文本...", label="輸入文本")
|
21 |
|
|
|
|
|
22 |
analyze_button = gr.Button("分析情緒")
|
|
|
23 |
|
24 |
result_output = gr.Markdown(label="分析結果")
|
25 |
plot_output = gr.Plot(label="信心度")
|
26 |
|
27 |
# 📌 綁定按鈕功能
|
28 |
-
def process_analysis(text):
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
plot = plot_confidence(confidence_score) # 生成條狀圖
|
|
|
31 |
return result, plot
|
32 |
|
33 |
-
analyze_button.click(process_analysis, inputs=text_input, outputs=[result_output, plot_output])
|
34 |
|
35 |
return iface
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
from sentiment import analyze_sentiment
|
4 |
|
5 |
+
# 📌 定義可選擇的模型
|
6 |
+
MODEL_OPTIONS = {
|
7 |
+
"🌎 多語言推特情緒分析 (XLM-RoBERTa)": "cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
8 |
+
"📖 多語言情緒分析 (BERT)": "nlptown/bert-base-multilingual-uncased-sentiment",
|
9 |
+
"🇬🇧 英語情緒分析 (DistilBERT)": "distilbert-base-uncased-finetuned-sst-2-english"
|
10 |
+
}
|
11 |
+
|
12 |
# 📌 生成簡單的信心度條狀圖
|
13 |
def plot_confidence(score):
|
14 |
fig, ax = plt.subplots(figsize=(4, 1)) # 調整圖表尺寸
|
|
|
22 |
def create_ui():
|
23 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
24 |
gr.Markdown("# 🎯 多語言情緒分析 AI")
|
25 |
+
gr.Markdown("請輸入一段文字,選擇 AI 模型,AI 會分析其情緒,並提供信心度。")
|
26 |
+
|
27 |
text_input = gr.Textbox(lines=3, placeholder="請輸入文本...", label="輸入文本")
|
28 |
|
29 |
+
model_selector = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="🌎 多語言推特情緒分析 (XLM-RoBERTa)", label="選擇 AI 模型")
|
30 |
+
|
31 |
analyze_button = gr.Button("分析情緒")
|
32 |
+
progress_bar = gr.Textbox(visible=False) # 進度條(文字顯示)
|
33 |
|
34 |
result_output = gr.Markdown(label="分析結果")
|
35 |
plot_output = gr.Plot(label="信心度")
|
36 |
|
37 |
# 📌 綁定按鈕功能
|
38 |
+
def process_analysis(text, model_name):
|
39 |
+
progress_bar.update("🔄 AI 模型載入中,請稍後...", visible=True) # 顯示載入進度
|
40 |
+
model_id = MODEL_OPTIONS[model_name] # 轉換中文名稱為模型 ID
|
41 |
+
|
42 |
+
result, confidence_score = analyze_sentiment(text, model_id) # 調用 API 進行分析
|
43 |
+
|
44 |
plot = plot_confidence(confidence_score) # 生成條狀圖
|
45 |
+
progress_bar.update("", visible=False) # 隱藏進度條
|
46 |
return result, plot
|
47 |
|
48 |
+
analyze_button.click(process_analysis, inputs=[text_input, model_selector], outputs=[result_output, plot_output, progress_bar])
|
49 |
|
50 |
return iface
|