Spaces:
Runtime error
Runtime error
File size: 11,780 Bytes
06a123d 045d7d4 ffd3002 045d7d4 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc ffd3002 789e5bc 045d7d4 789e5bc ffd3002 045d7d4 789e5bc 045d7d4 789e5bc ffd3002 789e5bc 06a123d 045d7d4 ffd3002 789e5bc ffd3002 789e5bc 06a123d 789e5bc 06a123d ffd3002 789e5bc ffd3002 789e5bc 045d7d4 50cf0f6 045d7d4 4a4f597 50cf0f6 4a4f597 50cf0f6 789e5bc 045d7d4 789e5bc 045d7d4 4a4f597 789e5bc 4a4f597 789e5bc 045d7d4 ffd3002 789e5bc ffd3002 789e5bc 06a123d 789e5bc 50cf0f6 ffd3002 789e5bc ffd3002 789e5bc 06a123d 789e5bc 4a4f597 045d7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import joblib
import time
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import numpy as np
FEATS = [
'srcip',
'sport',
'dstip',
'dsport',
'proto',
#'state', I dropped this one when I trained the model
'dur',
'sbytes',
'dbytes',
'sttl',
'dttl',
'sloss',
'dloss',
'service',
'Sload',
'Dload',
'Spkts',
'Dpkts',
'swin',
'dwin',
'stcpb',
'dtcpb',
'smeansz',
'dmeansz',
'trans_depth',
'res_bdy_len',
'Sjit',
'Djit',
'Stime',
'Ltime',
'Sintpkt',
'Dintpkt',
'tcprtt',
'synack',
'ackdat',
'is_sm_ips_ports',
'ct_state_ttl',
'ct_flw_http_mthd',
'is_ftp_login',
'ct_ftp_cmd',
'ct_srv_src',
'ct_srv_dst',
'ct_dst_ltm',
'ct_src_ltm',
'ct_src_dport_ltm',
'ct_dst_sport_ltm',
'ct_dst_src_ltm',
]
# Generated from
# mokole.com/palette.html
COLORS = [
'#000000',
'#808080',
'#2f4f4f',
'#556b2f',
'#8b4513',
'#228b22',
'#800000',
'#808000',
'#3cb371',
'#663399',
'#b8860b',
'#008b8b',
'#4682b4',
'#d2691e',
'#9acd32',
'#cd5c5c',
'#00008b',
'#32cd32',
'#8fbc8f',
'#b03060',
'#d2b48c',
'#ff0000',
'#ffa500',
'#ffd700',
'#ffff00',
'#0000cd',
'#00ff00',
'#8a2be2',
'#00ff7f',
'#4169e1',
'#dc143c',
'#00ffff',
'#00bfff',
'#f4a460',
'#adff2f',
'#ff6347',
'#da70d6',
'#d8bfd8',
'#ff00ff',
'#f0e68c',
'#6495ed',
'#dda0dd',
'#b0e0e6',
'#98fb98',
'#7fffd4',
'#ff69b4',
]
def build_parents(tree, visit_order, node_id2plot_id):
parents = [None]
parent_plot_ids = [None]
directions = [None]
for i in visit_order[1:]:
parent = tree[tree['right']==i].index
if parent.empty:
p = tree[tree['left']==i].index[0]
parent_plot_ids.append(str(node_id2plot_id[p]))
parents.append(p)
directions.append('l')
else:
parent_plot_ids.append(str(node_id2plot_id[parent[0]]))
parents.append(parent[0])
directions.append('r')
return parents, parent_plot_ids, directions
def build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions):
labels = ['Histogram Gradient-Boosted Decision Tree']
colors = ['white']
for i, parent, parent_plot_id, direction in zip(
visit_order,
parents,
parent_plot_ids,
directions
):
# skip the first one (the root)
if i == 0:
continue
node = tree.loc[i]
feat = FEATS[int(tree.loc[int(parent), 'feature_idx'])]
thresh = tree.loc[int(parent), 'num_threshold']
if direction == 'l':
labels.append(f"[{parent_plot_id}.L] {feat} <= {thresh}")
else:
labels.append(f"[{parent_plot_id}.R] {feat} > {thresh}")
# colors
offset = FEATS.index(feat)
colors.append(COLORS[offset])
return labels, colors
def build_plot(tree):
#https://stackoverflow.com/questions/64393535/python-plotly-treemap-ids-format-and-how-to-display-multiple-duplicated-labels-i
# if you use `ids`, then `parents` has to be in terms of `ids`
visit_order = breadth_first_traverse(tree)
node_id2plot_id = {node:i for i, node in enumerate(visit_order)}
parents, parent_plot_ids, directions = build_parents(tree, visit_order, node_id2plot_id)
labels, colors = build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions)
# this should just be ['0', '1', '2', . . .]
plot_ids = [str(node_id2plot_id[x]) for x in visit_order]
return go.Treemap(
values=tree['count'].to_numpy(),
labels=labels,
ids=plot_ids,
parents=parent_plot_ids,
marker_colors=colors,
)
def breadth_first_traverse(tree):
"""
https://www.101computing.net/breadth-first-traversal-of-a-binary-tree/
Iterative version makes more sense since I have the whole tree in a table
instead of just nodes and pointers
"""
q = [0]
visited_nodes = []
while len(q) != 0:
cur = q.pop(0)
visited_nodes.append(cur)
if tree.loc[cur, 'left'] != 0:
q.append(tree.loc[cur, 'left'])
if tree.loc[cur, 'right'] != 0:
q.append(tree.loc[cur, 'right'])
return visited_nodes
def main():
# load the data
hgb = joblib.load('hgb_classifier.joblib')
trees = [pd.DataFrame(x[0].nodes) for x in hgb._predictors]
# make the plots
graph_objs = [build_plot(tree) for tree in trees]
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
# each frame has to have a name
# https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763/2
frames = [go.Frame(data=graph_obj, name=str(i)) for i, graph_obj in enumerate(graph_objs)]
# show them with streamlit
#st.markdown('# Thankfully, Visualizing Decision Trees is Hard')
st.markdown('# Thankfully, visualizing decision trees is hard')
st.markdown('## Setting the scene')
st.markdown("""
I make a lot of dashboards, which means I make a lot of the same plots over and over.
Desperate for some creative outlet, I wanted to make a new visualization—
something I'd never seen before.
Inspired by interactive visualizations like
[Tensorflow Playground](https://playground.tensorflow.org)
and
[GAN Lab](https://poloclub.github.io/ganlab),
I decided to wanted to watch some kind of gradient-boosted tree as it learned.
""")
st.markdown('## Some kind of gradient-boosted tree')
st.markdown("""
I trained an ensemble of
[Histogram-based Gradient Boosting Decision Trees](https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting)
on some
[data](https://research.unsw.edu.au/projects/unsw-nb15-dataset).
That algorithm looks at its mistakes and tries to avoid those mistakes the next time around.
To do that, it starts off with a decision tree.
From there, it looks at the points that tree got wrong and makes another decision tree that tries
to get those points right.
Then it looks at that second tree's mistakes and makes a third tree that tries to fix those mistakes.
And so on.
My model ends up with 10 trees.
""")
st.markdown('## Behold')
st.markdown("""
I've plotted the progression of those 10 trees as an animated series of interactive Plotly tree maps.
The nodes are color-coded by which feature the decision tree used to make that split.
I've also labeled each node with the feature name and the decision boundary.
If you click on a node, Plotly will show the path to that node in a banner at the top of the plot so you can see how a point ends up in the node you clicked.
The numbers and letters in brackets like `[3.L]` refer to the parent node's position in a breadth-first traversal of the tree and whether the current node is a left or right child of that parent.
Plotly unfortunately plots everything flipped for some reason, so all the `R` nodes are on the left and vice versa.
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
It takes a second to get going after you hit `Play`.
""")
# Build the slider steps
slider_steps = []
for i in range(len(trees)):
slider_steps.append({
'args': [
[i],
{
'frame': {'duration': 300, 'redraw': True},
'mode': 'immediate',
'transition': {'duration': 300}
}
],
'label': i,
'method': 'animate',
})
sliders_dict = {
'active': 0,
'currentvalue': {
'font': {'size': 20},
'prefix': 'Tree ',
'visible': True
},
'transition': {'duration': 300},
'steps': slider_steps
}
# Maybe just show a Plotly animated chart
# https://plotly.com/python/animations/#using-a-slider-and-buttons
# They don't really document the animation stuff on their website
# but it's in here
# https://raw.githubusercontent.com/plotly/plotly.js/master/dist/plot-schema.json
# I guess it's only in the JS docs and hasn't made it to the Python docs yet
# https://plotly.com/javascript/animations/
# trying to find stuff here instead
# https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.updatemenu.html?highlight=updatemenu
# this one finally set the speed
# no mention of how they figured this out but thank goodness I found it
# https://towardsdatascience.com/basic-animation-with-matplotlib-and-plotly-5eef4ad6c5aa
# this also has custom animation speeds in it
# https://plotly.com/python/custom-buttons/#reference
ani_fig = go.Figure(
data=graph_objs[0],
frames=frames,
layout=go.Layout(
updatemenus=[{
'type':'buttons',
# https://plotly.com/python/reference/layout/updatemenus/
# Always show the background color on buttons
# streamlit breaks the background color of the active button in darkmode
'showactive': False,
# background color of the buttons
'bgcolor': '#fff',
# font in the buttons
'font': {'color': '#000'},
# border color of the buttons
'bordercolor': '#000',
# Play and Pause buttons
# trying to copy this exactly
# https://plotly.com/python/animations/#adding-control-buttons-to-animations
'buttons':[{
'label':'Play',
'method': 'animate',
'args':[None, {
'fromcurrent': True,
'frame': {'duration':5000},
'transition': {'duration': 2500},
}],
},
{
'label': 'Pause',
'method': 'animate',
'args':[[None], {
'frame': {'duration': 0},
'transition': {'duration': 0},
'mode': 'immediate'
}]
}
]
}],
# add the slider to the layout
sliders=[sliders_dict]
)
)
st.plotly_chart(ani_fig)
st.markdown("""
This actually turned out to be a lot harder than I thought it would be.
Plotly doesn't have many examples of how to create animations like this in Python.
[The only example I could find](https://plotly.com/python/animations/#using-a-slider-and-buttons)
was derided as an
["old example [. . .] that is not the best one to learn how to define an animation with slider."](https://community.plotly.com/t/slider-not-updating-during-animation/37261)
That helpful poster didn't point out any other examples, so that one is still pretty much all I have to go on.
Later on,
[a different answer by the same poster](https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763)
got me out of a jam.
As far as I can tell, this poster `empet` is the only person in the world who understands Plotly's animations in Python.
""")
st.markdown('## Check out the data!')
st.markdown("""
This plot is similar to the plot above, but the slider here coordinates with a table of the data I extracted to plot each tree.
""")
# This works the way I want
# but the plot is tiny
# also it recalcualtes all of the plots
# every time the slider value changes
#
# I tried to cache the plots but build_plot() takes
# a DataFrame which is mutable and therefore unhashable I guess
# so it won't let me cache that function
# I could pack the dataframe bytes to smuggle them past that check
# but whatever
idx = st.slider(
label='Which tree do you want to see?',
min_value=0,
max_value=len(figures)-1,
value=0,
step=1
)
st.markdown(f'### Tree {idx}')
st.plotly_chart(figures[idx])
st.dataframe(trees[idx])
st.markdown("""
This section is mostly just to warn you against making the same foolhardy decision to marry the innermost guts of SciKit-Learn to the sparsely documented world of Python Plotly animations.
I'm glad it was challenging, though.
I did go into this hoping for something more interesting than a donut plot.
Maybe I'll think on the `value` and `gain` fields a bit and come up with a version 2.
""")
if __name__=='__main__':
main()
|