Spaces:
Runtime error
Runtime error
none
commited on
Commit
·
789e5bc
1
Parent(s):
ffd3002
Finshing writing, change color palette
Browse files- streamlit_viz.py +116 -65
streamlit_viz.py
CHANGED
@@ -59,90 +59,54 @@ FEATS = [
|
|
59 |
# Generated from
|
60 |
# mokole.com/palette.html
|
61 |
COLORS = [
|
|
|
62 |
'#808080',
|
63 |
'#2f4f4f',
|
64 |
'#556b2f',
|
65 |
'#8b4513',
|
66 |
-
'#
|
67 |
-
'#2e8b57',
|
68 |
'#800000',
|
69 |
-
'#
|
70 |
-
'#
|
|
|
71 |
'#b8860b',
|
|
|
72 |
'#4682b4',
|
73 |
'#d2691e',
|
74 |
'#9acd32',
|
75 |
-
'#20b2aa',
|
76 |
'#cd5c5c',
|
77 |
'#00008b',
|
78 |
'#32cd32',
|
79 |
'#8fbc8f',
|
80 |
-
'#800080',
|
81 |
'#b03060',
|
82 |
'#d2b48c',
|
83 |
-
'#
|
84 |
'#ffa500',
|
|
|
85 |
'#ffff00',
|
86 |
-
'#c71585',
|
87 |
'#0000cd',
|
88 |
'#00ff00',
|
|
|
89 |
'#00ff7f',
|
|
|
90 |
'#dc143c',
|
91 |
'#00ffff',
|
92 |
'#00bfff',
|
93 |
'#f4a460',
|
94 |
-
'#9370db',
|
95 |
-
'#a020f0',
|
96 |
'#adff2f',
|
97 |
'#ff6347',
|
98 |
'#da70d6',
|
99 |
-
'#
|
100 |
'#ff00ff',
|
101 |
'#f0e68c',
|
102 |
'#6495ed',
|
103 |
'#dda0dd',
|
104 |
-
'#
|
105 |
'#98fb98',
|
106 |
'#7fffd4',
|
107 |
-
'#
|
108 |
-
]
|
109 |
|
110 |
-
|
111 |
-
# 'aliceblue','aqua','aquamarine','azure',
|
112 |
-
# 'bisque','black','blanchedalmond','blue',
|
113 |
-
# 'blueviolet','brown','burlywood','cadetblue',
|
114 |
-
# 'chartreuse','chocolate','coral','cornflowerblue',
|
115 |
-
# 'cornsilk','crimson','cyan','darkblue','darkcyan',
|
116 |
-
# 'darkgoldenrod','darkgray','darkgreen',
|
117 |
-
# 'darkkhaki','darkmagenta','darkolivegreen','darkorange',
|
118 |
-
# 'darkorchid','darkred','darksalmon','darkseagreen',
|
119 |
-
# 'darkslateblue','darkslategray',
|
120 |
-
# 'darkturquoise','darkviolet','deeppink','deepskyblue',
|
121 |
-
# 'dimgray','dodgerblue',
|
122 |
-
# 'forestgreen','fuchsia','gainsboro',
|
123 |
-
# 'gold','goldenrod','gray','green',
|
124 |
-
# 'greenyellow','honeydew','hotpink','indianred','indigo',
|
125 |
-
# 'ivory','khaki','lavender','lavenderblush','lawngreen',
|
126 |
-
# 'lemonchiffon','lightblue','lightcoral','lightcyan',
|
127 |
-
# 'lightgoldenrodyellow','lightgray',
|
128 |
-
# 'lightgreen','lightpink','lightsalmon','lightseagreen',
|
129 |
-
# 'lightskyblue','lightslategray',
|
130 |
-
# 'lightsteelblue','lightyellow','lime','limegreen',
|
131 |
-
# 'linen','magenta','maroon','mediumaquamarine',
|
132 |
-
# 'mediumblue','mediumorchid','mediumpurple',
|
133 |
-
# 'mediumseagreen','mediumslateblue','mediumspringgreen',
|
134 |
-
# 'mediumturquoise','mediumvioletred','midnightblue',
|
135 |
-
# 'mintcream','mistyrose','moccasin','navy',
|
136 |
-
# 'oldlace','olive','olivedrab','orange','orangered',
|
137 |
-
# 'orchid','palegoldenrod','palegreen','paleturquoise',
|
138 |
-
# 'palevioletred','papayawhip','peachpuff','peru','pink',
|
139 |
-
# 'plum','powderblue','purple','red','rosybrown',
|
140 |
-
# 'royalblue','saddlebrown','salmon','sandybrown',
|
141 |
-
# 'seagreen','seashell','sienna','silver','skyblue',
|
142 |
-
# 'slateblue','slategray','slategrey','snow','springgreen',
|
143 |
-
# 'steelblue','tan','teal','thistle','tomato','turquoise',
|
144 |
-
# 'violet','wheat','yellow','yellowgreen'
|
145 |
-
#]
|
146 |
|
147 |
def build_parents(tree, visit_order, node_id2plot_id):
|
148 |
parents = [None]
|
@@ -236,32 +200,87 @@ def main():
|
|
236 |
# make the plots
|
237 |
graph_objs = [build_plot(tree) for tree in trees]
|
238 |
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
|
239 |
-
|
|
|
|
|
240 |
# show them with streamlit
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
st.markdown("""
|
243 |
-
I trained
|
244 |
-
[Histogram-based Gradient Boosting
|
245 |
-
on some
|
|
|
246 |
That algoritm looks at its mistakes and tries to avoid those mistakes the next time around.
|
247 |
|
248 |
To do that, it starts off with a decision tree.
|
249 |
From there, it looks at the points that tree got wrong and makes another decision tree that tries
|
250 |
to get those points right.
|
251 |
-
Then it looks at that second tree's mistakes and makes
|
252 |
And so on.
|
253 |
|
254 |
My model ends up with 10 trees.
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
|
|
|
260 |
|
261 |
""")
|
262 |
|
263 |
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
# Maybe just show a Plotly animated chart
|
267 |
# https://plotly.com/python/animations/#using-a-slider-and-buttons
|
@@ -297,26 +316,54 @@ I recommend expanding the plot by clicking the arrows in the top right corner si
|
|
297 |
# border color of the buttons
|
298 |
'bordercolor': '#000',
|
299 |
|
300 |
-
# Play
|
|
|
|
|
301 |
'buttons':[{
|
302 |
'label':'Play',
|
303 |
'method': 'animate',
|
304 |
'args':[None, {
|
|
|
305 |
'frame': {'duration':5000},
|
306 |
'transition': {'duration': 2500},
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
]
|
310 |
-
}]
|
|
|
|
|
311 |
)
|
312 |
)
|
313 |
st.plotly_chart(ani_fig)
|
314 |
|
315 |
st.markdown("""
|
316 |
This actually turned out to be a lot harder than I thought it would be.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
""")
|
318 |
|
319 |
-
st.markdown('
|
|
|
|
|
|
|
320 |
|
321 |
# This works the way I want
|
322 |
# but the plot is tiny
|
@@ -335,9 +382,13 @@ This actually turned out to be a lot harder than I thought it would be.
|
|
335 |
value=0,
|
336 |
step=1
|
337 |
)
|
|
|
338 |
st.plotly_chart(figures[idx])
|
339 |
-
st.markdown(f'## Tree {idx}')
|
340 |
st.dataframe(trees[idx])
|
|
|
|
|
|
|
|
|
341 |
|
342 |
if __name__=='__main__':
|
343 |
main()
|
|
|
59 |
# Generated from
|
60 |
# mokole.com/palette.html
|
61 |
COLORS = [
|
62 |
+
'#000000',
|
63 |
'#808080',
|
64 |
'#2f4f4f',
|
65 |
'#556b2f',
|
66 |
'#8b4513',
|
67 |
+
'#228b22',
|
|
|
68 |
'#800000',
|
69 |
+
'#808000',
|
70 |
+
'#3cb371',
|
71 |
+
'#663399',
|
72 |
'#b8860b',
|
73 |
+
'#008b8b',
|
74 |
'#4682b4',
|
75 |
'#d2691e',
|
76 |
'#9acd32',
|
|
|
77 |
'#cd5c5c',
|
78 |
'#00008b',
|
79 |
'#32cd32',
|
80 |
'#8fbc8f',
|
|
|
81 |
'#b03060',
|
82 |
'#d2b48c',
|
83 |
+
'#ff0000',
|
84 |
'#ffa500',
|
85 |
+
'#ffd700',
|
86 |
'#ffff00',
|
|
|
87 |
'#0000cd',
|
88 |
'#00ff00',
|
89 |
+
'#8a2be2',
|
90 |
'#00ff7f',
|
91 |
+
'#4169e1',
|
92 |
'#dc143c',
|
93 |
'#00ffff',
|
94 |
'#00bfff',
|
95 |
'#f4a460',
|
|
|
|
|
96 |
'#adff2f',
|
97 |
'#ff6347',
|
98 |
'#da70d6',
|
99 |
+
'#d8bfd8',
|
100 |
'#ff00ff',
|
101 |
'#f0e68c',
|
102 |
'#6495ed',
|
103 |
'#dda0dd',
|
104 |
+
'#b0e0e6',
|
105 |
'#98fb98',
|
106 |
'#7fffd4',
|
107 |
+
'#ff69b4',
|
|
|
108 |
|
109 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def build_parents(tree, visit_order, node_id2plot_id):
|
112 |
parents = [None]
|
|
|
200 |
# make the plots
|
201 |
graph_objs = [build_plot(tree) for tree in trees]
|
202 |
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
|
203 |
+
# each frame has to have a name
|
204 |
+
# https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763/2
|
205 |
+
frames = [go.Frame(data=graph_obj, name=str(i)) for i, graph_obj in enumerate(graph_objs)]
|
206 |
# show them with streamlit
|
207 |
|
208 |
+
#st.markdown('# Thankfully, Visualizing Decision Trees is Hard')
|
209 |
+
st.markdown('# Thankfully, visualizing decision trees is hard')
|
210 |
+
st.markdown('## Setting the scene')
|
211 |
+
st.markdown("""
|
212 |
+
I make a lot of dashboards, which means I make a lot of the same plots over and over.
|
213 |
+
Desperate for some creative outlet, I wanted to make a new visualization—
|
214 |
+
something I'd never seen before.
|
215 |
+
Inspired by interactive visualizations like
|
216 |
+
[Tensorflow Playground](https://playground.tensorflow.org)
|
217 |
+
and
|
218 |
+
[GAN Lab](https://poloclub.github.io/ganlab),
|
219 |
+
I decided to wanted to watch some kind of gradient-boosted tree as it learned.
|
220 |
+
""")
|
221 |
+
|
222 |
+
st.markdown('## Some kind of gradient-boosted tree')
|
223 |
st.markdown("""
|
224 |
+
I trained an ensemble of
|
225 |
+
[Histogram-based Gradient Boosting Decision Trees](https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting)
|
226 |
+
on some
|
227 |
+
[data](https://research.unsw.edu.au/projects/unsw-nb15-dataset).
|
228 |
That algoritm looks at its mistakes and tries to avoid those mistakes the next time around.
|
229 |
|
230 |
To do that, it starts off with a decision tree.
|
231 |
From there, it looks at the points that tree got wrong and makes another decision tree that tries
|
232 |
to get those points right.
|
233 |
+
Then it looks at that second tree's mistakes and makes a third tree that tries to fix those mistakes.
|
234 |
And so on.
|
235 |
|
236 |
My model ends up with 10 trees.
|
237 |
+
""")
|
238 |
+
|
239 |
+
st.markdown('## Behold')
|
240 |
+
|
241 |
+
st.markdown("""
|
242 |
+
I've plotted the progression of those 10 trees as an animated series of interactive Plotly tree maps.
|
243 |
+
The nodes are color-coded by which feature the decision tree used to make that split.
|
244 |
+
|
245 |
+
I've also labeled each node with the feature name and the decison boundary.
|
246 |
+
If you click on a node, Plotly will show the path to that node in a banner at the top of the plot so you can see how a point ends up in the node you clicked.
|
247 |
+
|
248 |
+
The numbers and letters in brackets like `[3.L]` refer to the parent node's position in a breadth-first traversal of the tree and whether the current node is a left or right child of that parent.
|
249 |
+
Plotly unforunately plots everything flipped for some reason, so all the `R` nodes are on the left and vice versa.
|
250 |
|
251 |
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
|
252 |
+
It takes a second to get going after you hit `Play`.
|
253 |
|
254 |
""")
|
255 |
|
256 |
|
257 |
+
|
258 |
+
# Build the slider steps
|
259 |
+
slider_steps = []
|
260 |
+
for i in range(len(trees)):
|
261 |
+
slider_steps.append({
|
262 |
+
'args': [
|
263 |
+
[i],
|
264 |
+
{
|
265 |
+
'frame': {'duration': 300, 'redraw': True},
|
266 |
+
'mode': 'immediate',
|
267 |
+
'transition': {'duration': 300}
|
268 |
+
}
|
269 |
+
],
|
270 |
+
'label': i,
|
271 |
+
'method': 'animate',
|
272 |
+
})
|
273 |
+
|
274 |
+
sliders_dict = {
|
275 |
+
'active': 0,
|
276 |
+
'currentvalue': {
|
277 |
+
'font': {'size': 20},
|
278 |
+
'prefix': 'Tree ',
|
279 |
+
'visible': True
|
280 |
+
},
|
281 |
+
'transition': {'duration': 300},
|
282 |
+
'steps': slider_steps
|
283 |
+
}
|
284 |
|
285 |
# Maybe just show a Plotly animated chart
|
286 |
# https://plotly.com/python/animations/#using-a-slider-and-buttons
|
|
|
316 |
# border color of the buttons
|
317 |
'bordercolor': '#000',
|
318 |
|
319 |
+
# Play and Pause buttons
|
320 |
+
# trying to copy this exactly
|
321 |
+
# https://plotly.com/python/animations/#adding-control-buttons-to-animations
|
322 |
'buttons':[{
|
323 |
'label':'Play',
|
324 |
'method': 'animate',
|
325 |
'args':[None, {
|
326 |
+
'fromcurrent': True,
|
327 |
'frame': {'duration':5000},
|
328 |
'transition': {'duration': 2500},
|
329 |
+
}],
|
330 |
+
},
|
331 |
+
{
|
332 |
+
'label': 'Pause',
|
333 |
+
'method': 'animate',
|
334 |
+
'args':[[None], {
|
335 |
+
'frame': {'duration': 0},
|
336 |
+
'transition': {'duration': 0},
|
337 |
+
'mode': 'immediate'
|
338 |
+
}]
|
339 |
+
}
|
340 |
]
|
341 |
+
}],
|
342 |
+
# add the slider to the layout
|
343 |
+
sliders=[sliders_dict]
|
344 |
)
|
345 |
)
|
346 |
st.plotly_chart(ani_fig)
|
347 |
|
348 |
st.markdown("""
|
349 |
This actually turned out to be a lot harder than I thought it would be.
|
350 |
+
Plotly doesn't have many examples of how to create animations like this in Python.
|
351 |
+
[The only example I could find](https://plotly.com/python/animations/#using-a-slider-and-buttons)
|
352 |
+
was derided as an
|
353 |
+
["old example [. . .] that is not the best one to learn how to define an animation with slider."](https://community.plotly.com/t/slider-not-updating-during-animation/37261)
|
354 |
+
|
355 |
+
That helpful poster didn't point out any other examples, so that one is still pretty much all I have to go on.
|
356 |
+
|
357 |
+
Later on,
|
358 |
+
[a different answer by the same poster](https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763)
|
359 |
+
got me out of a jam.
|
360 |
+
As far as I can tell, this poster `empet` is the only person in the world who understands Plotly's animations in Python.
|
361 |
""")
|
362 |
|
363 |
+
st.markdown('## Check out the data!')
|
364 |
+
st.markdown("""
|
365 |
+
This plot is similar to the plot above, but the slider here coordinates with a table to show the data I extracted to plot each tree.
|
366 |
+
""")
|
367 |
|
368 |
# This works the way I want
|
369 |
# but the plot is tiny
|
|
|
382 |
value=0,
|
383 |
step=1
|
384 |
)
|
385 |
+
st.markdown(f'### Tree {idx}')
|
386 |
st.plotly_chart(figures[idx])
|
|
|
387 |
st.dataframe(trees[idx])
|
388 |
+
st.markdown("""
|
389 |
+
This section is mostly just to warn you against making the same foolhardy decision to marry the innermost guts of SciKit-Learn to the sparsely documented world of Python Plotly animations.
|
390 |
+
|
391 |
+
""")
|
392 |
|
393 |
if __name__=='__main__':
|
394 |
main()
|