Spaces:
Runtime error
Runtime error
none
commited on
Commit
·
789e5bc
1
Parent(s):
ffd3002
Finshing writing, change color palette
Browse files- streamlit_viz.py +116 -65
streamlit_viz.py
CHANGED
|
@@ -59,90 +59,54 @@ FEATS = [
|
|
| 59 |
# Generated from
|
| 60 |
# mokole.com/palette.html
|
| 61 |
COLORS = [
|
|
|
|
| 62 |
'#808080',
|
| 63 |
'#2f4f4f',
|
| 64 |
'#556b2f',
|
| 65 |
'#8b4513',
|
| 66 |
-
'#
|
| 67 |
-
'#2e8b57',
|
| 68 |
'#800000',
|
| 69 |
-
'#
|
| 70 |
-
'#
|
|
|
|
| 71 |
'#b8860b',
|
|
|
|
| 72 |
'#4682b4',
|
| 73 |
'#d2691e',
|
| 74 |
'#9acd32',
|
| 75 |
-
'#20b2aa',
|
| 76 |
'#cd5c5c',
|
| 77 |
'#00008b',
|
| 78 |
'#32cd32',
|
| 79 |
'#8fbc8f',
|
| 80 |
-
'#800080',
|
| 81 |
'#b03060',
|
| 82 |
'#d2b48c',
|
| 83 |
-
'#
|
| 84 |
'#ffa500',
|
|
|
|
| 85 |
'#ffff00',
|
| 86 |
-
'#c71585',
|
| 87 |
'#0000cd',
|
| 88 |
'#00ff00',
|
|
|
|
| 89 |
'#00ff7f',
|
|
|
|
| 90 |
'#dc143c',
|
| 91 |
'#00ffff',
|
| 92 |
'#00bfff',
|
| 93 |
'#f4a460',
|
| 94 |
-
'#9370db',
|
| 95 |
-
'#a020f0',
|
| 96 |
'#adff2f',
|
| 97 |
'#ff6347',
|
| 98 |
'#da70d6',
|
| 99 |
-
'#
|
| 100 |
'#ff00ff',
|
| 101 |
'#f0e68c',
|
| 102 |
'#6495ed',
|
| 103 |
'#dda0dd',
|
| 104 |
-
'#
|
| 105 |
'#98fb98',
|
| 106 |
'#7fffd4',
|
| 107 |
-
'#
|
| 108 |
-
]
|
| 109 |
|
| 110 |
-
|
| 111 |
-
# 'aliceblue','aqua','aquamarine','azure',
|
| 112 |
-
# 'bisque','black','blanchedalmond','blue',
|
| 113 |
-
# 'blueviolet','brown','burlywood','cadetblue',
|
| 114 |
-
# 'chartreuse','chocolate','coral','cornflowerblue',
|
| 115 |
-
# 'cornsilk','crimson','cyan','darkblue','darkcyan',
|
| 116 |
-
# 'darkgoldenrod','darkgray','darkgreen',
|
| 117 |
-
# 'darkkhaki','darkmagenta','darkolivegreen','darkorange',
|
| 118 |
-
# 'darkorchid','darkred','darksalmon','darkseagreen',
|
| 119 |
-
# 'darkslateblue','darkslategray',
|
| 120 |
-
# 'darkturquoise','darkviolet','deeppink','deepskyblue',
|
| 121 |
-
# 'dimgray','dodgerblue',
|
| 122 |
-
# 'forestgreen','fuchsia','gainsboro',
|
| 123 |
-
# 'gold','goldenrod','gray','green',
|
| 124 |
-
# 'greenyellow','honeydew','hotpink','indianred','indigo',
|
| 125 |
-
# 'ivory','khaki','lavender','lavenderblush','lawngreen',
|
| 126 |
-
# 'lemonchiffon','lightblue','lightcoral','lightcyan',
|
| 127 |
-
# 'lightgoldenrodyellow','lightgray',
|
| 128 |
-
# 'lightgreen','lightpink','lightsalmon','lightseagreen',
|
| 129 |
-
# 'lightskyblue','lightslategray',
|
| 130 |
-
# 'lightsteelblue','lightyellow','lime','limegreen',
|
| 131 |
-
# 'linen','magenta','maroon','mediumaquamarine',
|
| 132 |
-
# 'mediumblue','mediumorchid','mediumpurple',
|
| 133 |
-
# 'mediumseagreen','mediumslateblue','mediumspringgreen',
|
| 134 |
-
# 'mediumturquoise','mediumvioletred','midnightblue',
|
| 135 |
-
# 'mintcream','mistyrose','moccasin','navy',
|
| 136 |
-
# 'oldlace','olive','olivedrab','orange','orangered',
|
| 137 |
-
# 'orchid','palegoldenrod','palegreen','paleturquoise',
|
| 138 |
-
# 'palevioletred','papayawhip','peachpuff','peru','pink',
|
| 139 |
-
# 'plum','powderblue','purple','red','rosybrown',
|
| 140 |
-
# 'royalblue','saddlebrown','salmon','sandybrown',
|
| 141 |
-
# 'seagreen','seashell','sienna','silver','skyblue',
|
| 142 |
-
# 'slateblue','slategray','slategrey','snow','springgreen',
|
| 143 |
-
# 'steelblue','tan','teal','thistle','tomato','turquoise',
|
| 144 |
-
# 'violet','wheat','yellow','yellowgreen'
|
| 145 |
-
#]
|
| 146 |
|
| 147 |
def build_parents(tree, visit_order, node_id2plot_id):
|
| 148 |
parents = [None]
|
|
@@ -236,32 +200,87 @@ def main():
|
|
| 236 |
# make the plots
|
| 237 |
graph_objs = [build_plot(tree) for tree in trees]
|
| 238 |
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
# show them with streamlit
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
st.markdown("""
|
| 243 |
-
I trained
|
| 244 |
-
[Histogram-based Gradient Boosting
|
| 245 |
-
on some
|
|
|
|
| 246 |
That algoritm looks at its mistakes and tries to avoid those mistakes the next time around.
|
| 247 |
|
| 248 |
To do that, it starts off with a decision tree.
|
| 249 |
From there, it looks at the points that tree got wrong and makes another decision tree that tries
|
| 250 |
to get those points right.
|
| 251 |
-
Then it looks at that second tree's mistakes and makes
|
| 252 |
And so on.
|
| 253 |
|
| 254 |
My model ends up with 10 trees.
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
|
|
|
|
| 260 |
|
| 261 |
""")
|
| 262 |
|
| 263 |
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
# Maybe just show a Plotly animated chart
|
| 267 |
# https://plotly.com/python/animations/#using-a-slider-and-buttons
|
|
@@ -297,26 +316,54 @@ I recommend expanding the plot by clicking the arrows in the top right corner si
|
|
| 297 |
# border color of the buttons
|
| 298 |
'bordercolor': '#000',
|
| 299 |
|
| 300 |
-
# Play
|
|
|
|
|
|
|
| 301 |
'buttons':[{
|
| 302 |
'label':'Play',
|
| 303 |
'method': 'animate',
|
| 304 |
'args':[None, {
|
|
|
|
| 305 |
'frame': {'duration':5000},
|
| 306 |
'transition': {'duration': 2500},
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
]
|
| 310 |
-
}]
|
|
|
|
|
|
|
| 311 |
)
|
| 312 |
)
|
| 313 |
st.plotly_chart(ani_fig)
|
| 314 |
|
| 315 |
st.markdown("""
|
| 316 |
This actually turned out to be a lot harder than I thought it would be.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
""")
|
| 318 |
|
| 319 |
-
st.markdown('
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
# This works the way I want
|
| 322 |
# but the plot is tiny
|
|
@@ -335,9 +382,13 @@ This actually turned out to be a lot harder than I thought it would be.
|
|
| 335 |
value=0,
|
| 336 |
step=1
|
| 337 |
)
|
|
|
|
| 338 |
st.plotly_chart(figures[idx])
|
| 339 |
-
st.markdown(f'## Tree {idx}')
|
| 340 |
st.dataframe(trees[idx])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
if __name__=='__main__':
|
| 343 |
main()
|
|
|
|
| 59 |
# Generated from
|
| 60 |
# mokole.com/palette.html
|
| 61 |
COLORS = [
|
| 62 |
+
'#000000',
|
| 63 |
'#808080',
|
| 64 |
'#2f4f4f',
|
| 65 |
'#556b2f',
|
| 66 |
'#8b4513',
|
| 67 |
+
'#228b22',
|
|
|
|
| 68 |
'#800000',
|
| 69 |
+
'#808000',
|
| 70 |
+
'#3cb371',
|
| 71 |
+
'#663399',
|
| 72 |
'#b8860b',
|
| 73 |
+
'#008b8b',
|
| 74 |
'#4682b4',
|
| 75 |
'#d2691e',
|
| 76 |
'#9acd32',
|
|
|
|
| 77 |
'#cd5c5c',
|
| 78 |
'#00008b',
|
| 79 |
'#32cd32',
|
| 80 |
'#8fbc8f',
|
|
|
|
| 81 |
'#b03060',
|
| 82 |
'#d2b48c',
|
| 83 |
+
'#ff0000',
|
| 84 |
'#ffa500',
|
| 85 |
+
'#ffd700',
|
| 86 |
'#ffff00',
|
|
|
|
| 87 |
'#0000cd',
|
| 88 |
'#00ff00',
|
| 89 |
+
'#8a2be2',
|
| 90 |
'#00ff7f',
|
| 91 |
+
'#4169e1',
|
| 92 |
'#dc143c',
|
| 93 |
'#00ffff',
|
| 94 |
'#00bfff',
|
| 95 |
'#f4a460',
|
|
|
|
|
|
|
| 96 |
'#adff2f',
|
| 97 |
'#ff6347',
|
| 98 |
'#da70d6',
|
| 99 |
+
'#d8bfd8',
|
| 100 |
'#ff00ff',
|
| 101 |
'#f0e68c',
|
| 102 |
'#6495ed',
|
| 103 |
'#dda0dd',
|
| 104 |
+
'#b0e0e6',
|
| 105 |
'#98fb98',
|
| 106 |
'#7fffd4',
|
| 107 |
+
'#ff69b4',
|
|
|
|
| 108 |
|
| 109 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
def build_parents(tree, visit_order, node_id2plot_id):
|
| 112 |
parents = [None]
|
|
|
|
| 200 |
# make the plots
|
| 201 |
graph_objs = [build_plot(tree) for tree in trees]
|
| 202 |
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
|
| 203 |
+
# each frame has to have a name
|
| 204 |
+
# https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763/2
|
| 205 |
+
frames = [go.Frame(data=graph_obj, name=str(i)) for i, graph_obj in enumerate(graph_objs)]
|
| 206 |
# show them with streamlit
|
| 207 |
|
| 208 |
+
#st.markdown('# Thankfully, Visualizing Decision Trees is Hard')
|
| 209 |
+
st.markdown('# Thankfully, visualizing decision trees is hard')
|
| 210 |
+
st.markdown('## Setting the scene')
|
| 211 |
+
st.markdown("""
|
| 212 |
+
I make a lot of dashboards, which means I make a lot of the same plots over and over.
|
| 213 |
+
Desperate for some creative outlet, I wanted to make a new visualization—
|
| 214 |
+
something I'd never seen before.
|
| 215 |
+
Inspired by interactive visualizations like
|
| 216 |
+
[Tensorflow Playground](https://playground.tensorflow.org)
|
| 217 |
+
and
|
| 218 |
+
[GAN Lab](https://poloclub.github.io/ganlab),
|
| 219 |
+
I decided to wanted to watch some kind of gradient-boosted tree as it learned.
|
| 220 |
+
""")
|
| 221 |
+
|
| 222 |
+
st.markdown('## Some kind of gradient-boosted tree')
|
| 223 |
st.markdown("""
|
| 224 |
+
I trained an ensemble of
|
| 225 |
+
[Histogram-based Gradient Boosting Decision Trees](https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting)
|
| 226 |
+
on some
|
| 227 |
+
[data](https://research.unsw.edu.au/projects/unsw-nb15-dataset).
|
| 228 |
That algoritm looks at its mistakes and tries to avoid those mistakes the next time around.
|
| 229 |
|
| 230 |
To do that, it starts off with a decision tree.
|
| 231 |
From there, it looks at the points that tree got wrong and makes another decision tree that tries
|
| 232 |
to get those points right.
|
| 233 |
+
Then it looks at that second tree's mistakes and makes a third tree that tries to fix those mistakes.
|
| 234 |
And so on.
|
| 235 |
|
| 236 |
My model ends up with 10 trees.
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
st.markdown('## Behold')
|
| 240 |
+
|
| 241 |
+
st.markdown("""
|
| 242 |
+
I've plotted the progression of those 10 trees as an animated series of interactive Plotly tree maps.
|
| 243 |
+
The nodes are color-coded by which feature the decision tree used to make that split.
|
| 244 |
+
|
| 245 |
+
I've also labeled each node with the feature name and the decison boundary.
|
| 246 |
+
If you click on a node, Plotly will show the path to that node in a banner at the top of the plot so you can see how a point ends up in the node you clicked.
|
| 247 |
+
|
| 248 |
+
The numbers and letters in brackets like `[3.L]` refer to the parent node's position in a breadth-first traversal of the tree and whether the current node is a left or right child of that parent.
|
| 249 |
+
Plotly unforunately plots everything flipped for some reason, so all the `R` nodes are on the left and vice versa.
|
| 250 |
|
| 251 |
I recommend expanding the plot by clicking the arrows in the top right corner since Streamlit makes the plot really small.
|
| 252 |
+
It takes a second to get going after you hit `Play`.
|
| 253 |
|
| 254 |
""")
|
| 255 |
|
| 256 |
|
| 257 |
+
|
| 258 |
+
# Build the slider steps
|
| 259 |
+
slider_steps = []
|
| 260 |
+
for i in range(len(trees)):
|
| 261 |
+
slider_steps.append({
|
| 262 |
+
'args': [
|
| 263 |
+
[i],
|
| 264 |
+
{
|
| 265 |
+
'frame': {'duration': 300, 'redraw': True},
|
| 266 |
+
'mode': 'immediate',
|
| 267 |
+
'transition': {'duration': 300}
|
| 268 |
+
}
|
| 269 |
+
],
|
| 270 |
+
'label': i,
|
| 271 |
+
'method': 'animate',
|
| 272 |
+
})
|
| 273 |
+
|
| 274 |
+
sliders_dict = {
|
| 275 |
+
'active': 0,
|
| 276 |
+
'currentvalue': {
|
| 277 |
+
'font': {'size': 20},
|
| 278 |
+
'prefix': 'Tree ',
|
| 279 |
+
'visible': True
|
| 280 |
+
},
|
| 281 |
+
'transition': {'duration': 300},
|
| 282 |
+
'steps': slider_steps
|
| 283 |
+
}
|
| 284 |
|
| 285 |
# Maybe just show a Plotly animated chart
|
| 286 |
# https://plotly.com/python/animations/#using-a-slider-and-buttons
|
|
|
|
| 316 |
# border color of the buttons
|
| 317 |
'bordercolor': '#000',
|
| 318 |
|
| 319 |
+
# Play and Pause buttons
|
| 320 |
+
# trying to copy this exactly
|
| 321 |
+
# https://plotly.com/python/animations/#adding-control-buttons-to-animations
|
| 322 |
'buttons':[{
|
| 323 |
'label':'Play',
|
| 324 |
'method': 'animate',
|
| 325 |
'args':[None, {
|
| 326 |
+
'fromcurrent': True,
|
| 327 |
'frame': {'duration':5000},
|
| 328 |
'transition': {'duration': 2500},
|
| 329 |
+
}],
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
'label': 'Pause',
|
| 333 |
+
'method': 'animate',
|
| 334 |
+
'args':[[None], {
|
| 335 |
+
'frame': {'duration': 0},
|
| 336 |
+
'transition': {'duration': 0},
|
| 337 |
+
'mode': 'immediate'
|
| 338 |
+
}]
|
| 339 |
+
}
|
| 340 |
]
|
| 341 |
+
}],
|
| 342 |
+
# add the slider to the layout
|
| 343 |
+
sliders=[sliders_dict]
|
| 344 |
)
|
| 345 |
)
|
| 346 |
st.plotly_chart(ani_fig)
|
| 347 |
|
| 348 |
st.markdown("""
|
| 349 |
This actually turned out to be a lot harder than I thought it would be.
|
| 350 |
+
Plotly doesn't have many examples of how to create animations like this in Python.
|
| 351 |
+
[The only example I could find](https://plotly.com/python/animations/#using-a-slider-and-buttons)
|
| 352 |
+
was derided as an
|
| 353 |
+
["old example [. . .] that is not the best one to learn how to define an animation with slider."](https://community.plotly.com/t/slider-not-updating-during-animation/37261)
|
| 354 |
+
|
| 355 |
+
That helpful poster didn't point out any other examples, so that one is still pretty much all I have to go on.
|
| 356 |
+
|
| 357 |
+
Later on,
|
| 358 |
+
[a different answer by the same poster](https://community.plotly.com/t/animation-with-slider-not-moving-when-pressing-play/34763)
|
| 359 |
+
got me out of a jam.
|
| 360 |
+
As far as I can tell, this poster `empet` is the only person in the world who understands Plotly's animations in Python.
|
| 361 |
""")
|
| 362 |
|
| 363 |
+
st.markdown('## Check out the data!')
|
| 364 |
+
st.markdown("""
|
| 365 |
+
This plot is similar to the plot above, but the slider here coordinates with a table to show the data I extracted to plot each tree.
|
| 366 |
+
""")
|
| 367 |
|
| 368 |
# This works the way I want
|
| 369 |
# but the plot is tiny
|
|
|
|
| 382 |
value=0,
|
| 383 |
step=1
|
| 384 |
)
|
| 385 |
+
st.markdown(f'### Tree {idx}')
|
| 386 |
st.plotly_chart(figures[idx])
|
|
|
|
| 387 |
st.dataframe(trees[idx])
|
| 388 |
+
st.markdown("""
|
| 389 |
+
This section is mostly just to warn you against making the same foolhardy decision to marry the innermost guts of SciKit-Learn to the sparsely documented world of Python Plotly animations.
|
| 390 |
+
|
| 391 |
+
""")
|
| 392 |
|
| 393 |
if __name__=='__main__':
|
| 394 |
main()
|