File size: 11,040 Bytes
9482433
805fa9c
9482433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
9482433
 
 
 
 
 
 
 
 
 
 
805fa9c
 
 
 
 
 
9482433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9482433
805fa9c
 
9482433
805fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9482433
 
 
 
 
 
 
805fa9c
 
9482433
 
 
805fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9482433
 
805fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9482433
 
 
 
 
 
 
 
 
 
805fa9c
9482433
 
 
805fa9c
 
 
9482433
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

class MultiModelChat:
    def __init__(self):
        self.models = {}
    
    def ensure_model_loaded(self, model_name):
        """Lazy load a model only when needed"""
        if model_name not in self.models:
            print(f"Loading {model_name} model...")
            
            if model_name == 'SmolLM2':
                self.models['SmolLM2'] = {
                    'tokenizer': AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct"),
                    'model': AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct")
                }
            elif model_name == 'NanoLM-25M':
                self.models['NanoLM-25M'] = {
                    'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoLM-25M-Instruct-v1.1"),
                    'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoLM-25M-Instruct-v1.1")
                }
            elif model_name == 'NanoTranslator-S':
                self.models['NanoTranslator-S'] = {
                    'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoTranslator-S"),
                    'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoTranslator-S")
                }
            elif model_name == 'NanoTranslator-XL':
                self.models['NanoTranslator-XL'] = {
                    'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoTranslator-XL"),
                    'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoTranslator-XL")
                }
            
            # Set pad token for the newly loaded model
            if self.models[model_name]['tokenizer'].pad_token is None:
                self.models[model_name]['tokenizer'].pad_token = self.models[model_name]['tokenizer'].eos_token
            
            print(f"{model_name} model loaded successfully!")
    
    def chat(self, message, history, model_choice):
        if model_choice == "SmolLM2":
            return self.chat_smol(message, history)
        elif model_choice == "NanoLM-25M":
            return self.chat_nanolm(message, history)
        elif model_choice == "NanoTranslator-S":
            return self.chat_translator(message, history)
        elif model_choice == "NanoTranslator-XL":
            return self.chat_translator_xl(message, history)
    
    def chat_smol(self, message, history):
        self.ensure_model_loaded('SmolLM2')
        
        tokenizer = self.models['SmolLM2']['tokenizer']
        model = self.models['SmolLM2']['model']
        
        inputs = tokenizer(f"User: {message}\nAssistant:", return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_new_tokens=80,
            temperature=0.7,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response.split("Assistant:")[-1].strip()
    
    def chat_nanolm(self, message, history):
        self.ensure_model_loaded('NanoLM-25M')
        
        tokenizer = self.models['NanoLM-25M']['tokenizer']
        model = self.models['NanoLM-25M']['model']
        
        # Use chat template for NanoLM
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": message}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        inputs = tokenizer([text], return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_new_tokens=100,
            temperature=0.7,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response
    
    def chat_translator(self, message, history):
        self.ensure_model_loaded('NanoTranslator-S')
        
        tokenizer = self.models['NanoTranslator-S']['tokenizer']
        model = self.models['NanoTranslator-S']['model']
        
        # Use translation prompt format
        prompt = f"<|im_start|>{message}<|endoftext|>"
        inputs = tokenizer([prompt], return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_new_tokens=100,
            temperature=0.55,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response
    
    def chat_translator_xl(self, message, history):
        self.ensure_model_loaded('NanoTranslator-XL')
        
        tokenizer = self.models['NanoTranslator-XL']['tokenizer']
        model = self.models['NanoTranslator-XL']['model']
        
        # Use translation prompt format
        prompt = f"<|im_start|>{message}<|endoftext|>"
        inputs = tokenizer([prompt], return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_new_tokens=100,
            temperature=0.55,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response

chat_app = MultiModelChat()

def respond(message, history, model_choice):
    return chat_app.chat(message, history, model_choice)

with gr.Blocks(theme="soft") as demo:
    gr.Markdown("# πŸ€– Multi-Model Tiny Chatbot")
    gr.Markdown("*Lightweight AI models for different tasks - Choose the right model for your needs!*")
    
    with gr.Row():
        model_dropdown = gr.Dropdown(
            choices=["SmolLM2", "NanoLM-25M", "NanoTranslator-S", "NanoTranslator-XL"],
            value="NanoLM-25M",
            label="Select Model",
            info="Choose the best model for your task"
        )
    
    # Model information display
    with gr.Row():
        model_info = gr.Markdown(
            """
            ## πŸ“‹ NanoLM-25M (25M) - Selected
            **Best for:** Quick responses, simple tasks, resource-constrained environments  
            **Language:** English  
            **Memory:** ~100MB  
            **Speed:** Very Fast  
            
            πŸ’‘ **Tip:** Ultra-lightweight model perfect for fast responses!
            """,
            visible=True
        )
    
    chatbot = gr.Chatbot(height=400, show_label=False)
    msg = gr.Textbox(
        label="Message", 
        placeholder="Type your message here...",
        lines=2
    )
    
    with gr.Row():
        clear = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
        submit = gr.Button("πŸ’¬ Send", variant="primary")
    
    # Usage tips
    with gr.Accordion("πŸ“– Model Usage Guide", open=False):
        gr.Markdown("""
        ### 🎯 When to use each model:
        
        **πŸ”΅ SmolLM2 (135M)**
        - General conversations and questions
        - Creative writing tasks
        - Coding help and explanations
        - Educational content
        
        **🟒 NanoLM-25M (25M)** 
        - Quick responses when speed matters
        - Resource-constrained environments
        - Simple Q&A tasks
        - Mobile or edge deployment
        
        **πŸ”΄ NanoTranslator-S (9M)**
        - Fast English β†’ Chinese translation
        - Basic translation needs
        - Ultra-low memory usage
        - Real-time translation
        
        **🟑 NanoTranslator-XL (78M)**
        - High-quality English β†’ Chinese translation
        - Professional translation work
        - Complex sentences and idioms
        - Better context understanding
        
        ### πŸ’‘ Pro Tips:
        - Models load automatically when first selected (lazy loading)
        - Translation models work best with clear, complete sentences
        - For translation, input English text and get Chinese output
        - Restart the app to free up memory from unused models
        """)
    
    def update_model_info(model_choice):
        info_map = {
            "SmolLM2": """
            ## πŸ“‹ SmolLM2 (135M) - Selected
            **Best for:** General conversation, Q&A, creative writing, coding help  
            **Language:** English  
            **Memory:** ~500MB  
            **Speed:** Fast  
            
            πŸ’‘ **Tip:** Great all-around model for most conversational tasks!
            """,
            "NanoLM-25M": """
            ## πŸ“‹ NanoLM-25M (25M) - Selected
            **Best for:** Quick responses, simple tasks, resource-constrained environments  
            **Language:** English  
            **Memory:** ~100MB  
            **Speed:** Very Fast  
            
            πŸ’‘ **Tip:** Ultra-lightweight model perfect for fast responses!
            """,
            "NanoTranslator-S": """
            ## πŸ“‹ NanoTranslator-S (9M) - Selected
            **Best for:** Fast English β†’ Chinese translation  
            **Language:** English β†’ Chinese  
            **Memory:** ~50MB  
            **Speed:** Very Fast  
            
            πŸ’‘ **Tip:** Input English text to get Chinese translation. Great for quick translations!
            """,
            "NanoTranslator-XL": """
            ## πŸ“‹ NanoTranslator-XL (78M) - Selected
            **Best for:** High-quality English β†’ Chinese translation  
            **Language:** English β†’ Chinese  
            **Memory:** ~300MB  
            **Speed:** Fast  
            
            πŸ’‘ **Tip:** Best translation quality for complex sentences and professional use!
            """
        }
        return info_map.get(model_choice, "")
    
    # Update model info when dropdown changes
    model_dropdown.change(
        update_model_info,
        inputs=[model_dropdown],
        outputs=[model_info]
    )
    
    def user_message(message, history):
        return "", history + [[message, None]]
    
    def bot_message(history, model_choice):
        user_msg = history[-1][0]
        bot_response = chat_app.chat(user_msg, history[:-1], model_choice)
        history[-1][1] = bot_response
        return history
    
    # Handle message submission
    msg.submit(user_message, [msg, chatbot], [msg, chatbot]).then(
        bot_message, [chatbot, model_dropdown], chatbot
    )
    submit.click(user_message, [msg, chatbot], [msg, chatbot]).then(
        bot_message, [chatbot, model_dropdown], chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()