Spaces:
Running
Running
davideuler
commited on
Commit
Β·
805fa9c
1
Parent(s):
9482433
for Huggingface push
Browse files- README.md +98 -1
- main.py +211 -21
- requirements.txt +6 -0
README.md
CHANGED
@@ -10,5 +10,102 @@ pinned: false
|
|
10 |
license: mit
|
11 |
short_description: Some small models chatbot
|
12 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
10 |
license: mit
|
11 |
short_description: Some small models chatbot
|
12 |
---
|
13 |
+
=======
|
14 |
+
# Multi-Model Tiny Chatbot
|
15 |
+
|
16 |
+
A lightweight, multi-model chat application featuring several small language models optimized for different tasks. Built with Gradio for an intuitive web interface and designed for local deployment.
|
17 |
+
|
18 |
+
## π Features
|
19 |
+
|
20 |
+
- **Multiple Model Support**: Choose from 4 specialized small language models
|
21 |
+
- **Lazy Loading**: Models are loaded only when selected, optimizing memory usage
|
22 |
+
- **Real-time Chat Interface**: Smooth conversational experience with Gradio
|
23 |
+
- **Lightweight**: All models are under 200M parameters for fast inference
|
24 |
+
- **Local Deployment**: Run entirely on your local machine
|
25 |
+
|
26 |
+
## π€ Available Models
|
27 |
+
|
28 |
+
### 1. SmolLM2 (135M Parameters)
|
29 |
+
- **Purpose**: General conversation and instruction following
|
30 |
+
- **Architecture**: HuggingFace SmolLM2-135M-Instruct
|
31 |
+
- **Best For**: General Q&A, creative writing, coding help
|
32 |
+
- **Language**: English
|
33 |
+
|
34 |
+
### 2. NanoLM-25M (25M Parameters)
|
35 |
+
- **Purpose**: Ultra-lightweight instruction following
|
36 |
+
- **Architecture**: Mistral-based with chat template support
|
37 |
+
- **Best For**: Quick responses, simple tasks, resource-constrained environments
|
38 |
+
- **Language**: English
|
39 |
+
|
40 |
+
### 3. NanoTranslator-S (9M Parameters)
|
41 |
+
- **Purpose**: English to Chinese translation
|
42 |
+
- **Architecture**: LLaMA-based translation model
|
43 |
+
- **Best For**: Translating English text to Chinese
|
44 |
+
- **Language**: English β Chinese
|
45 |
+
|
46 |
+
### 4. NanoTranslator-XL (78M Parameters)
|
47 |
+
- **Purpose**: Enhanced English to Chinese translation
|
48 |
+
- **Architecture**: LLaMA-based with improved accuracy
|
49 |
+
- **Best For**: High-quality English to Chinese translation
|
50 |
+
- **Language**: English β Chinese
|
51 |
+
|
52 |
+
## π Quick Start
|
53 |
+
|
54 |
+
### Prerequisites
|
55 |
+
|
56 |
+
- Python 3.8 or higher
|
57 |
+
- 4GB+ RAM recommended
|
58 |
+
- Internet connection for initial model downloads
|
59 |
+
|
60 |
+
### Installation
|
61 |
+
|
62 |
+
1. **Run the application**
|
63 |
+
```bash
|
64 |
+
uv run main.py
|
65 |
+
```
|
66 |
+
|
67 |
+
2. **Open your browser**
|
68 |
+
- Navigate to `http://localhost:7860`
|
69 |
+
- Select a model and start chatting!
|
70 |
+
|
71 |
+
|
72 |
+
## π― Use Cases
|
73 |
+
|
74 |
+
### General Conversation
|
75 |
+
- Use **SmolLM2** or **NanoLM-25M** for general chat, Q&A, and assistance
|
76 |
+
|
77 |
+
### Translation Tasks
|
78 |
+
- Use **NanoTranslator-S** for quick EnglishβChinese translations
|
79 |
+
- Use **NanoTranslator-XL** for higher quality EnglishβChinese translations
|
80 |
+
|
81 |
+
### Resource-Constrained Environments
|
82 |
+
- **NanoLM-25M** (25M params) for ultra-lightweight deployment
|
83 |
+
- **NanoTranslator-S** (9M params) for minimal translation needs
|
84 |
+
|
85 |
+
## π‘ Model Performance
|
86 |
+
|
87 |
+
| Model | Parameters | Use Case | Memory Usage | Speed |
|
88 |
+
|-------|------------|----------|--------------|-------|
|
89 |
+
| SmolLM2 | 135M | General Chat | ~500MB | Fast |
|
90 |
+
| NanoLM-25M | 25M | Lightweight Chat | ~100MB | Very Fast |
|
91 |
+
| NanoTranslator-S | 9M | Quick Translation | ~50MB | Very Fast |
|
92 |
+
| NanoTranslator-XL | 78M | Quality Translation | ~300MB | Fast |
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
### Model Sources
|
97 |
+
- SmolLM2: `HuggingFaceTB/SmolLM2-135M-Instruct`
|
98 |
+
- NanoLM-25M: `Mxode/NanoLM-25M-Instruct-v1.1`
|
99 |
+
- NanoTranslator-S: `Mxode/NanoTranslator-S`
|
100 |
+
- NanoTranslator-XL: `Mxode/NanoTranslator-XL`
|
101 |
+
|
102 |
+
## π License
|
103 |
+
|
104 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
105 |
+
|
106 |
+
## π Acknowledgments
|
107 |
+
|
108 |
+
- [HuggingFace](https://huggingface.co/) for the Transformers library and model hosting
|
109 |
+
- [Mxode](https://huggingface.co/Mxode) for the Nano series models
|
110 |
+
- [Gradio](https://gradio.app/) for the amazing web interface framework
|
111 |
|
|
main.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
class MultiModelChat:
|
5 |
def __init__(self):
|
@@ -15,10 +15,20 @@ class MultiModelChat:
|
|
15 |
'tokenizer': AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct"),
|
16 |
'model': AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct")
|
17 |
}
|
18 |
-
elif model_name == '
|
19 |
-
self.models['
|
20 |
-
'tokenizer':
|
21 |
-
'model':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
|
24 |
# Set pad token for the newly loaded model
|
@@ -30,8 +40,12 @@ class MultiModelChat:
|
|
30 |
def chat(self, message, history, model_choice):
|
31 |
if model_choice == "SmolLM2":
|
32 |
return self.chat_smol(message, history)
|
33 |
-
elif model_choice == "
|
34 |
-
return self.
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def chat_smol(self, message, history):
|
37 |
self.ensure_model_loaded('SmolLM2')
|
@@ -50,15 +64,79 @@ class MultiModelChat:
|
|
50 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
return response.split("Assistant:")[-1].strip()
|
52 |
|
53 |
-
def
|
54 |
-
self.ensure_model_loaded('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
tokenizer = self.models['
|
57 |
-
model = self.models['
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
chat_app = MultiModelChat()
|
64 |
|
@@ -66,18 +144,126 @@ def respond(message, history, model_choice):
|
|
66 |
return chat_app.chat(message, history, model_choice)
|
67 |
|
68 |
with gr.Blocks(theme="soft") as demo:
|
69 |
-
gr.Markdown("# Multi-Model Tiny Chatbot")
|
|
|
70 |
|
71 |
with gr.Row():
|
72 |
model_dropdown = gr.Dropdown(
|
73 |
-
choices=["SmolLM2", "
|
74 |
-
value="
|
75 |
-
label="Select Model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
-
chatbot = gr.Chatbot(height=400)
|
79 |
-
msg = gr.Textbox(
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def user_message(message, history):
|
83 |
return "", history + [[message, None]]
|
@@ -88,9 +274,13 @@ with gr.Blocks(theme="soft") as demo:
|
|
88 |
history[-1][1] = bot_response
|
89 |
return history
|
90 |
|
|
|
91 |
msg.submit(user_message, [msg, chatbot], [msg, chatbot]).then(
|
92 |
bot_message, [chatbot, model_dropdown], chatbot
|
93 |
)
|
|
|
|
|
|
|
94 |
clear.click(lambda: None, None, chatbot, queue=False)
|
95 |
|
96 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
class MultiModelChat:
|
5 |
def __init__(self):
|
|
|
15 |
'tokenizer': AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct"),
|
16 |
'model': AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct")
|
17 |
}
|
18 |
+
elif model_name == 'NanoLM-25M':
|
19 |
+
self.models['NanoLM-25M'] = {
|
20 |
+
'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoLM-25M-Instruct-v1.1"),
|
21 |
+
'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoLM-25M-Instruct-v1.1")
|
22 |
+
}
|
23 |
+
elif model_name == 'NanoTranslator-S':
|
24 |
+
self.models['NanoTranslator-S'] = {
|
25 |
+
'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoTranslator-S"),
|
26 |
+
'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoTranslator-S")
|
27 |
+
}
|
28 |
+
elif model_name == 'NanoTranslator-XL':
|
29 |
+
self.models['NanoTranslator-XL'] = {
|
30 |
+
'tokenizer': AutoTokenizer.from_pretrained("Mxode/NanoTranslator-XL"),
|
31 |
+
'model': AutoModelForCausalLM.from_pretrained("Mxode/NanoTranslator-XL")
|
32 |
}
|
33 |
|
34 |
# Set pad token for the newly loaded model
|
|
|
40 |
def chat(self, message, history, model_choice):
|
41 |
if model_choice == "SmolLM2":
|
42 |
return self.chat_smol(message, history)
|
43 |
+
elif model_choice == "NanoLM-25M":
|
44 |
+
return self.chat_nanolm(message, history)
|
45 |
+
elif model_choice == "NanoTranslator-S":
|
46 |
+
return self.chat_translator(message, history)
|
47 |
+
elif model_choice == "NanoTranslator-XL":
|
48 |
+
return self.chat_translator_xl(message, history)
|
49 |
|
50 |
def chat_smol(self, message, history):
|
51 |
self.ensure_model_loaded('SmolLM2')
|
|
|
64 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
return response.split("Assistant:")[-1].strip()
|
66 |
|
67 |
+
def chat_nanolm(self, message, history):
|
68 |
+
self.ensure_model_loaded('NanoLM-25M')
|
69 |
+
|
70 |
+
tokenizer = self.models['NanoLM-25M']['tokenizer']
|
71 |
+
model = self.models['NanoLM-25M']['model']
|
72 |
+
|
73 |
+
# Use chat template for NanoLM
|
74 |
+
messages = [
|
75 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
76 |
+
{"role": "user", "content": message}
|
77 |
+
]
|
78 |
+
text = tokenizer.apply_chat_template(
|
79 |
+
messages,
|
80 |
+
tokenize=False,
|
81 |
+
add_generation_prompt=True
|
82 |
+
)
|
83 |
+
inputs = tokenizer([text], return_tensors="pt")
|
84 |
+
outputs = model.generate(
|
85 |
+
inputs.input_ids,
|
86 |
+
max_new_tokens=100,
|
87 |
+
temperature=0.7,
|
88 |
+
do_sample=True,
|
89 |
+
pad_token_id=tokenizer.eos_token_id
|
90 |
+
)
|
91 |
+
generated_ids = [
|
92 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
|
93 |
+
]
|
94 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
95 |
+
return response
|
96 |
+
|
97 |
+
def chat_translator(self, message, history):
|
98 |
+
self.ensure_model_loaded('NanoTranslator-S')
|
99 |
|
100 |
+
tokenizer = self.models['NanoTranslator-S']['tokenizer']
|
101 |
+
model = self.models['NanoTranslator-S']['model']
|
102 |
|
103 |
+
# Use translation prompt format
|
104 |
+
prompt = f"<|im_start|>{message}<|endoftext|>"
|
105 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
106 |
+
outputs = model.generate(
|
107 |
+
inputs.input_ids,
|
108 |
+
max_new_tokens=100,
|
109 |
+
temperature=0.55,
|
110 |
+
do_sample=True,
|
111 |
+
pad_token_id=tokenizer.eos_token_id
|
112 |
+
)
|
113 |
+
generated_ids = [
|
114 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
|
115 |
+
]
|
116 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
117 |
+
return response
|
118 |
+
|
119 |
+
def chat_translator_xl(self, message, history):
|
120 |
+
self.ensure_model_loaded('NanoTranslator-XL')
|
121 |
+
|
122 |
+
tokenizer = self.models['NanoTranslator-XL']['tokenizer']
|
123 |
+
model = self.models['NanoTranslator-XL']['model']
|
124 |
+
|
125 |
+
# Use translation prompt format
|
126 |
+
prompt = f"<|im_start|>{message}<|endoftext|>"
|
127 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
128 |
+
outputs = model.generate(
|
129 |
+
inputs.input_ids,
|
130 |
+
max_new_tokens=100,
|
131 |
+
temperature=0.55,
|
132 |
+
do_sample=True,
|
133 |
+
pad_token_id=tokenizer.eos_token_id
|
134 |
+
)
|
135 |
+
generated_ids = [
|
136 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
|
137 |
+
]
|
138 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
139 |
+
return response
|
140 |
|
141 |
chat_app = MultiModelChat()
|
142 |
|
|
|
144 |
return chat_app.chat(message, history, model_choice)
|
145 |
|
146 |
with gr.Blocks(theme="soft") as demo:
|
147 |
+
gr.Markdown("# π€ Multi-Model Tiny Chatbot")
|
148 |
+
gr.Markdown("*Lightweight AI models for different tasks - Choose the right model for your needs!*")
|
149 |
|
150 |
with gr.Row():
|
151 |
model_dropdown = gr.Dropdown(
|
152 |
+
choices=["SmolLM2", "NanoLM-25M", "NanoTranslator-S", "NanoTranslator-XL"],
|
153 |
+
value="NanoLM-25M",
|
154 |
+
label="Select Model",
|
155 |
+
info="Choose the best model for your task"
|
156 |
+
)
|
157 |
+
|
158 |
+
# Model information display
|
159 |
+
with gr.Row():
|
160 |
+
model_info = gr.Markdown(
|
161 |
+
"""
|
162 |
+
## π NanoLM-25M (25M) - Selected
|
163 |
+
**Best for:** Quick responses, simple tasks, resource-constrained environments
|
164 |
+
**Language:** English
|
165 |
+
**Memory:** ~100MB
|
166 |
+
**Speed:** Very Fast
|
167 |
+
|
168 |
+
π‘ **Tip:** Ultra-lightweight model perfect for fast responses!
|
169 |
+
""",
|
170 |
+
visible=True
|
171 |
)
|
172 |
|
173 |
+
chatbot = gr.Chatbot(height=400, show_label=False)
|
174 |
+
msg = gr.Textbox(
|
175 |
+
label="Message",
|
176 |
+
placeholder="Type your message here...",
|
177 |
+
lines=2
|
178 |
+
)
|
179 |
+
|
180 |
+
with gr.Row():
|
181 |
+
clear = gr.Button("ποΈ Clear Chat", variant="secondary")
|
182 |
+
submit = gr.Button("π¬ Send", variant="primary")
|
183 |
+
|
184 |
+
# Usage tips
|
185 |
+
with gr.Accordion("π Model Usage Guide", open=False):
|
186 |
+
gr.Markdown("""
|
187 |
+
### π― When to use each model:
|
188 |
+
|
189 |
+
**π΅ SmolLM2 (135M)**
|
190 |
+
- General conversations and questions
|
191 |
+
- Creative writing tasks
|
192 |
+
- Coding help and explanations
|
193 |
+
- Educational content
|
194 |
+
|
195 |
+
**π’ NanoLM-25M (25M)**
|
196 |
+
- Quick responses when speed matters
|
197 |
+
- Resource-constrained environments
|
198 |
+
- Simple Q&A tasks
|
199 |
+
- Mobile or edge deployment
|
200 |
+
|
201 |
+
**π΄ NanoTranslator-S (9M)**
|
202 |
+
- Fast English β Chinese translation
|
203 |
+
- Basic translation needs
|
204 |
+
- Ultra-low memory usage
|
205 |
+
- Real-time translation
|
206 |
+
|
207 |
+
**π‘ NanoTranslator-XL (78M)**
|
208 |
+
- High-quality English β Chinese translation
|
209 |
+
- Professional translation work
|
210 |
+
- Complex sentences and idioms
|
211 |
+
- Better context understanding
|
212 |
+
|
213 |
+
### π‘ Pro Tips:
|
214 |
+
- Models load automatically when first selected (lazy loading)
|
215 |
+
- Translation models work best with clear, complete sentences
|
216 |
+
- For translation, input English text and get Chinese output
|
217 |
+
- Restart the app to free up memory from unused models
|
218 |
+
""")
|
219 |
+
|
220 |
+
def update_model_info(model_choice):
|
221 |
+
info_map = {
|
222 |
+
"SmolLM2": """
|
223 |
+
## π SmolLM2 (135M) - Selected
|
224 |
+
**Best for:** General conversation, Q&A, creative writing, coding help
|
225 |
+
**Language:** English
|
226 |
+
**Memory:** ~500MB
|
227 |
+
**Speed:** Fast
|
228 |
+
|
229 |
+
π‘ **Tip:** Great all-around model for most conversational tasks!
|
230 |
+
""",
|
231 |
+
"NanoLM-25M": """
|
232 |
+
## π NanoLM-25M (25M) - Selected
|
233 |
+
**Best for:** Quick responses, simple tasks, resource-constrained environments
|
234 |
+
**Language:** English
|
235 |
+
**Memory:** ~100MB
|
236 |
+
**Speed:** Very Fast
|
237 |
+
|
238 |
+
π‘ **Tip:** Ultra-lightweight model perfect for fast responses!
|
239 |
+
""",
|
240 |
+
"NanoTranslator-S": """
|
241 |
+
## π NanoTranslator-S (9M) - Selected
|
242 |
+
**Best for:** Fast English β Chinese translation
|
243 |
+
**Language:** English β Chinese
|
244 |
+
**Memory:** ~50MB
|
245 |
+
**Speed:** Very Fast
|
246 |
+
|
247 |
+
π‘ **Tip:** Input English text to get Chinese translation. Great for quick translations!
|
248 |
+
""",
|
249 |
+
"NanoTranslator-XL": """
|
250 |
+
## π NanoTranslator-XL (78M) - Selected
|
251 |
+
**Best for:** High-quality English β Chinese translation
|
252 |
+
**Language:** English β Chinese
|
253 |
+
**Memory:** ~300MB
|
254 |
+
**Speed:** Fast
|
255 |
+
|
256 |
+
π‘ **Tip:** Best translation quality for complex sentences and professional use!
|
257 |
+
"""
|
258 |
+
}
|
259 |
+
return info_map.get(model_choice, "")
|
260 |
+
|
261 |
+
# Update model info when dropdown changes
|
262 |
+
model_dropdown.change(
|
263 |
+
update_model_info,
|
264 |
+
inputs=[model_dropdown],
|
265 |
+
outputs=[model_info]
|
266 |
+
)
|
267 |
|
268 |
def user_message(message, history):
|
269 |
return "", history + [[message, None]]
|
|
|
274 |
history[-1][1] = bot_response
|
275 |
return history
|
276 |
|
277 |
+
# Handle message submission
|
278 |
msg.submit(user_message, [msg, chatbot], [msg, chatbot]).then(
|
279 |
bot_message, [chatbot, model_dropdown], chatbot
|
280 |
)
|
281 |
+
submit.click(user_message, [msg, chatbot], [msg, chatbot]).then(
|
282 |
+
bot_message, [chatbot, model_dropdown], chatbot
|
283 |
+
)
|
284 |
clear.click(lambda: None, None, chatbot, queue=False)
|
285 |
|
286 |
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
torch>=2.0.0
|
4 |
+
protobuf>=4.21.0
|
5 |
+
accelerate>=0.20.0
|
6 |
+
safetensors>=0.3.0
|